Zobrazeno 1 - 10
of 26
pro vyhledávání: '"V. K. Mel'nikov"'
Autor:
V. K. Mel'nikov
Publikováno v:
Theoretical and Mathematical Physics. 134:94-106
We propose a new approach for deriving nonlinear evolution equations solvable by the inverse scattering transform. The starting point of this approach is consideration of the evolution equations for the scattering data generated by solutions of an ar
Autor:
V. K. Mel'nikov
Publikováno v:
Czechoslovak Journal of Physics. 51:1385-1394
The new approach to deriving nonlinear evolution equations solvable by the inverse scattering method is proposed. In particular, this approach allows one to describe all equations solvable by the inverse scattering method for the Schrodinger operator
Autor:
V. K. Mel'nikov
Publikováno v:
Theoretical and Mathematical Physics. 99:733-737
The Korteweg-de Vries equation with a source given as a Fourier integral over eigenfunctions of the so-called generating operator is considered. It is shown that, depending on the choice of the basis of the eigenfunctions, we have the following three
Autor:
V K Mel'nikov
Publikováno v:
Inverse Problems. 8:133-147
It is shown that the nonlinear Schrodinger equation with a source can be investigated by the inverse scattering method for the Dirac operator if the source is represented as the Fourier integral over the eigenfunctions of the so-called generating ope
Autor:
V. K. Mel'nikov
Publikováno v:
Comm. Math. Phys. 137, no. 2 (1991), 359-381
It is shown that the nonlinear Schroedinger equation with a self-consistent source admits investigation by the inverse scattering method for the Dirac operator. The conditions are found under which the solutions of the nonlinear Schroedinger equation
Autor:
V K Mel'nikov
Publikováno v:
Inverse Problems. 6:809-823
The inverse scattering method for the one-dimensional Schrodinger operator on a straight line is used to derive solutions for the Korteweg-de Vries equation with a self-consistent source which describe creation and annihilation of solitons. The reaso
Autor:
V. K. Mel’nikov
Publikováno v:
Journal of Mathematical Physics. 31:1106-1113
A new approach is proposed to derive nonlinear integrable systems. It is used to obtain several new nonlinear integrable systems. The above results are relevant to some problems of hydrodynamics, plasma physics, solid‐state physics, etc.
Autor:
V K Mel'nikov
Publikováno v:
Inverse Problems. 6:233-246
It is shown that solutions of the Korteweg-de Vries equation with a source which are rapidly decreasing as x to +or- infinity can be obtained by the inverse scattering method for the one-dimensional Schrodinger operator on a straight line. The condit
Autor:
V. N. Saliĭ, F. P. Vasil’ev, S. V. Matveev, A. N. Parshin, V. D. Kukin, A. B. Ivanov, M. S. Nikulin, I. A. Vinogradova, P. S. Soltan, Sh. A. Alimov, V. A. Il’in, V. I. Danilov, N. Kh. Rozov, M. V. Fedoryuk, M. K. Samarin, P. K. Suetin, A. V. Malyshev, Yu. A. Brychkov, A. P. Prudnikov, Ü. Lumiste, V. L. Popov, B. V. Khvedelidze, A. L. Onishchik, D. V. Alekseevskiĭ, V. I. Sobolev, V. V. Rumyantsev, A. S. Fedenko, L. D. Ivanov, I. G. Koshevmkova, G. E. Mints, A. L. Semenov, A. I. Shtern, A. D. Aleksandrov, B. A. Pasynkov, M. I. Voĭtsekhovskiĭ, E. K. Godunova, V. M. Tikhomirov, B. M. Bredikhin, V. B. Korotkov, B. M. Levitan, N. K. Nikol’skiĭ, B. S. Pavlov, E. V. Shikin, Yu. V. Komlenko, S. G. Tankeev, A. I. Ovseevich, L. P. Kuptsov, I. I. Volkov, V. S. Vladimirov, E. D. Solomentsev, K. M. Chirka, G. F. Laptev, A. V. Chernavskiĭ, V. K. Mel’nikov, E. B. Vinberg, V. E. Govorov, A. V. Mikhalev, L. A. Skornyakov, A. A. Mal’tsev, E. G. Sklyarenko, G. S. Chogoshvili, D. V. Anosov, D. M. Smirnov, I. P. Egorov, M. M. Postnikov, I. V. Dolgachev, A. V. Shokurov, N. N. Vil’yams, A. V. Prokhorov, A. G. Sveshnikov, G. G. Chernyĭ, V. D. Kuzhin, V. I. Bityutskov, G. V. Kuz’mina, Yu. I. Shokin, N. N. Yanenko, D. D. Sokolov, A. Kaneko, E. A. Chistova, A. A. Sapozhenko, B. A. Efimov, L. D. Kudryavtsev, S. M. Voronin, V. T. Bazylev, L. N. Sretenskiĭ, V. N. Remeslennikov, O. V. Sarmanov, I. A. Kvasnikov, B. L. Rozhdestvenskiĭ, V. M. Kopytov
Publikováno v:
Encyclopaedia of Mathematics ISBN: 9780792329756
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c0fd871934bbf66b3f219570eb250ff8
https://doi.org/10.1007/978-1-4899-3793-3_1
https://doi.org/10.1007/978-1-4899-3793-3_1