Zobrazeno 1 - 10
of 40
pro vyhledávání: '"V. K. Maslyuchenko"'
Autor:
V. K. Maslyuchenko, V. V. Nesterenko
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 5, Iss 1, Pp 79-88 (2013)
It is shown that every linear mapping ontopological vector spaces always has weak Darboux property, therefore, it is continuous ifand only if it is transitive. For finite-dimensional mapping $f$ with values in Hausdorfftopological vector space the fo
Externí odkaz:
https://doaj.org/article/e1c88cfdb8e545dd801068bca4241d16
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 4, Iss 1, Pp 23-27 (2013)
Using a theorem on the approximation of the identity in the Banach space $C_u(Y)$ of all continuous functions $g:Y\rightarrow \mathbb{R}$, defined on a metrizable compact $Y$ with the uniform norm, we prove that for a topological space $X$, a metriza
Externí odkaz:
https://doaj.org/article/ee58b5a21ad443faa731c32041f82fc8
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 2, Iss 2, Pp 10-20 (2013)
We investigate the following problem: which dense subspaces$L$ of the Banach space $C(Y)$ of continuous functions on acompact $Y$ and topological spaces $X$ have such property, thatfor every separately or jointly continuous functions $f: X\times Y\ri
Externí odkaz:
https://doaj.org/article/7515a31c15b544e191cb5fd2000e05df
Autor:
H. A. Voloshyn, V. K. Maslyuchenko
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 2, Iss 1, Pp 4-14 (2013)
Using Jackson's and Bernstein's operators we prove that for every topological space $X$ and an arbitrary separately continuous function $f: X \times \mathbb{R}\rightarrow \mathbb{R}$, $2\pi$-periodical in relation to the second variable, there exists
Externí odkaz:
https://doaj.org/article/db4ace7454d84112aef199d2323c79b3
Autor:
H. A. Voloshyn, V. K. Maslyuchenko
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 2, Iss 1, Pp 4-14 (2010)
Using Jackson's and Bernstein's operators we prove that forevery topological space $X$ and an arbitrary separately continuous function $f: X imes mathbb{R}ightarrow mathbb{R}$,$2pi$-periodical in relation to the second variable, thereexists such sequ
Externí odkaz:
https://doaj.org/article/e05f2a41d2514d95bea2f25cb84a664c
Autor:
O. I. Filipchuk, V. K. Maslyuchenko
Publikováno v:
Ukrainian Mathematical Journal. 71:912-920
We obtain a general result on the constancy of separately continuous mappings and their analogs, which yields the well-known Sierpinski theorem. By using this result, we study the set of continuity points of separately continuous mappings with at mos
Publikováno v:
Ukrainian Mathematical Journal. 69:19-31
For systems of functions F = {f n ∈ K X : n ∈ ℕ} and G = {g n ∈ K Y : n ∈ ℕ}, we consider an F-polynomial $$ f={\sum}_{k=1}^n{\uplambda}_k{f}_k $$ , a G-polynomial $$ g={\sum}_{k=1}^n{\uplambda}_k{g}_k $$ , and an F ⊗ G-polynomial $$ h=
Publikováno v:
Tatra Mountains Mathematical Publications. 68:47-58
We prove general theorems on quasi-continuity of mappings f : X 1 × ⋯ × Xn → Z with values in a completely regular space Z. As consequences, we obtain results on joint continuity of separately continuous functions of several variables involving
Autor:
V. K. Maslyuchenko, H. A. Voloshyn
Publikováno v:
Ukrainian Mathematical Journal. 68:171-178
Given compact spaces X and Y, we study the space S(X × Y) of separately continuous functions f : X × Y → ℝ endowed with the locally convex topology generated by the seminorms $$ \begin{array}{lll}{\left\Vert f\right\Vert}^x={ \max}_{y\in Y}\lef
Publikováno v:
Ukrainian Mathematical Journal. 67:881-890
We study properties of the Ceder product X × b Y of topological spaces X and Y, where b ∈ Y, recently introduced by the authors. Important examples of the Ceder product are the Ceder plane and the Alexandroff double circle. In particular, for i =