Zobrazeno 1 - 10
of 321
pro vyhledávání: '"V. I. Oseledets"'
Autor:
O. N. Ageev, Ya. B. Vorobets, B. Weiss, R. I. Grigorchuk, V. Z. Grines, B. M. Gurevich, L. S. Efremova, A. Yu. Zhirov, E. V. Zhuzhoma, B. S. Kashin, V. N. Kolokoltsov, A. V. Kochergin, L. M. Lerman, I. V. Mykytyuk, V. I. Oseledets, A. Yu. Plakhov, O. V. Pochinka, V. V. Ryzhikov, V. Zh. Sakbaev, A. G. Sergeev, Ya. G. Sinai, A. T. Tagi-Zade, S. V. Tikhonov, J.-P. Thouvenot, A. Ya. Helemskii, A. I. Shafarevich
Publikováno v:
Russian Mathematical Surveys. 77:361-367
Publikováno v:
Journal of Experimental and Theoretical Physics. 132:446-452
The dependences of the turbulent flame velocity in a random flow on the turbulence intensity have been studied in terms of the Kolmogorov–Petrovsky–Piskunov nonlinearity model in the one-dimensional case. We show that for a static random medium t
Autor:
Z. I. Bezhaeva, V. I. Oseledets
Publikováno v:
Journal of Mathematical Sciences. 240:507-514
In a previous paper (Funct. Anal. Appl., 3 (2015), 205–209), we defined quantum Markov states. Here we recall this definition and present a proof of the results from that paper (which are given there without proofs). We give a definition of a quant
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 297:28-34
Let A ∈ M n (ℤ) be a matrix with eigenvalues greater than 1 in absolute value. The ℤ n -valued random variables ξ t , t ∈ ℤ, are i.i.d., and P(ξ t = j) = p j , j ∈ ℤ n , 0 < p 0 < 1, ∑ j p j = 1. We study the properties of the distr
Autor:
Z. I. Bezhaeva, V. I. Oseledets
Publikováno v:
Functional Analysis and Its Applications. 49:205-209
The definition of a quantum Markov state was given by Accardi in 1975. For the classical case, this definition gives hidden Markov measures, which, generally speaking, are not Markov measures. We can use a nonnegative transfer matrix to define a Mark
Autor:
Z. I. Bezhaeva, V. I. Oseledets
Publikováno v:
Journal of Dynamical and Control Systems. 19:569-573
Algorithm is given for computation of the Hausdorff dimension of the support of the Erdos measure for a Pisot number.
Autor:
Z. I. Bezhaeva, V. I. Oseledets
Publikováno v:
Journal of Dynamical and Control Systems. 19:301-308
Consider a sofic dynamical system (X, T, μ), where X =A Z is the full symbolic compact set with the product topology, and A = {0, 1, . . . , d}. The shift is $$ T:\left\{ {{x_n}} \right\}\to \left\{ {{{{x^{\prime}}}_n}} \right\},{{x^{\prime}}_n}={x_
Autor:
V. I. Oseledets, Z. I. Bezhaeva
Publikováno v:
Theory of Probability & Its Applications. 57:135-144
Let $1
Publikováno v:
Diskretnaya Matematika. 24:108-122
Autor:
V. I. Oseledets, Z. I. Bezhaeva
Publikováno v:
Functional Analysis and Its Applications. 44:83-91
Properties of the Erdős measure and the invariant Erdős measure for the golden ratio and all values of the Bernoulli parameter are studied. It is proved that a shift on the two-sided Fibonacci compact set with invariant Erdős measure is isomorphic