Zobrazeno 1 - 10
of 48
pro vyhledávání: '"V. I. Bernik"'
Publikováno v:
Цифровая трансформация, Vol 28, Iss 3, Pp 73-81 (2022)
The new coronavirus infection has caused the death and injury of millions of people and animals. The pandemic has shown the shortcomings of the health care systems of even the most economically developed countries. Genomics and bioinformatics provide
Externí odkaz:
https://doaj.org/article/53e35a0e9b214e5780fca36d0ab53282
Publikováno v:
Цифровая трансформация, Vol 28, Iss 1, Pp 71-81 (2022)
The novel coronavirus pandemic has stimulated the scientific activity of virology and interdisciplinary sciences: medical cybernetics and bioinformatics. The article is focused on the study of algorithms for processing bioinformatic data of genomic o
Externí odkaz:
https://doaj.org/article/091e2245d8594cc9b6837ae7ac14ec59
Publikováno v:
Doklady BGUIR. 21:104-113
Publikováno v:
Doklady of the National Academy of Sciences of Belarus. 65:526-532
The problem of finding the Lebesgue measure 𝛍 of the set B1 of the coverings of the solutions of the inequality, ⎸Px⎹ −w, w>n , Q ∈ N and Q >1, in integer polynomials P (x) of degree, which doesn’t exceed n and the height H (P) ≤ Q , i
Publikováno v:
Doklady of the National Academy of Sciences of Belarus. 65:397-403
In the metric theory of Diophantine approximations, one of the main problems leading to exact characteristics in the classifications of Mahler and Koksma is to estimate the Lebesgue measure of the points x ∈ B ⊂ I from the interval I such as the
Publikováno v:
Doklady of the National Academy of Sciences of Belarus. 64:7-12
Let z = f ( x , y ) be a surface in three-dimensional Euclidean space. Consider a neighborhood V of this surface, whose points satisfy the inequality | f ( x , y ) - z| < Q -Y , where 0 < у < 1 and Q is a sufficiently large positive integer. In the
Publikováno v:
Чебышевский сборник. 19:5-14
Publikováno v:
Articles
An upper bound for the number of cubic polynomials which have small discriminant in terms of the Euclidean and p-adic metrics simultaneously is obtained.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e066300c2cbee0175eeb3b0bf21c63c0
https://arrow.tudublin.ie/context/ittsciart/article/1104/viewcontent/Bernik2018_Article_DiscriminantsOfPolynomialsInTh.pdf
https://arrow.tudublin.ie/context/ittsciart/article/1104/viewcontent/Bernik2018_Article_DiscriminantsOfPolynomialsInTh.pdf
We generalize the result of Davenport on the sum of absolute values of discriminants of integer polynomials of degree three. For the first time, we find the exact upper bound for the number of polynomials with given discriminant in the class of cubic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8627cd0ad02ffc1e717d872ef26f581d
https://doi.org/10.1007/s10986-017-9361-4
https://doi.org/10.1007/s10986-017-9361-4
Autor:
V. I. Bernik, N. A. Dmitriev, E. B. Dynkin, K H Elster, L. A. Gutnik, R. Heine, F. I. Karpelevich, L. G. Kiseleva, A. F. Leont′ev, Yu I Mamin, Yu. P. Razmyslov, L. A. Skornyakov, D. P. Skvortsov
Papers covering topics including information science, Lie algebras, group theory, matrix theory, and number theory.