Zobrazeno 1 - 10
of 225
pro vyhledávání: '"V. Dohm"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
N. A. Lockerbie, John A. Lipa, Christophe Salomon, V. Dohm, K. Gibble, Guenter Ahlers, Neil Ashby, Claus Lämmerzahl, H. Dittus, N. Mulders, M. Barmatz, Robert Duncan, P. L. Biermann
Publikováno v:
General Relativity and Gravitation. 36:615-649
This is a review of those experiments in the area of Fundamental Physics that are either approved by ESA and NASA, or are currently under development, which are to be performed in the microgravity environment of the International Space Station. These
Publikováno v:
The European Physical Journal B. 15:283-296
We study the large-$r$ behavior of the bulk order-parameter correlation function $G(\bf{r})$ for $T>T_c$ within the lattice $\phi^4$ theory. We also study the large-$L$ behavior of the susceptibility $\chi$ of the confined lattice system of size $L$
Autor:
V. Dohm, X. S. Chen
Publikováno v:
The European Physical Journal B. 7:183-186
We study cutoff and lattice effects in the O(n) symmetric $\phi^4$ theory for a $d$-dimensional cubic geometry of size $L$ with periodic boundary conditions. In the large-N limit above $T_c$, we show that $\phi^4$ field theory at finite cutoff $\Lamb
Autor:
X. S. Chen, V. Dohm
Publikováno v:
International Journal of Modern Physics C. :1073-1105
We present a perturbative calculation of finite-size effects near $T_c$ of the $\phi^4$ lattice model in a $d$-dimensional cubic geometry of size $L$ with periodic boundary conditions for $d > 4$. The structural differences between the $\phi^4$ latti
Publikováno v:
The European Physical Journal B. 5:529-542
We derive exact results for several thermodynamic quantities of the O ( n ) symmetric field theory in the limit in a finite d-dimensional hypercubic geometry with periodic boundary conditions. Corresponding results are derived for an O ( n ) symmetri
Autor:
X. S. Chen, V. Dohm
Publikováno v:
International Journal of Modern Physics C. :1007-1019
We demonstrate that the standard O(n) symmetric φ4 field theory does not correctly describe the leading finite-size effects near the critical point of spin systems with periodic boundary conditions on a d-dimensional lattice with d>4. We show that t
Autor:
X. S. Chen, V. Dohm
Publikováno v:
International Journal of Modern Physics B. 12:1277-1290
We present a renormalization-group study of the order-parameter distribution function near the critical point of O(n) symmetric three-dimensional (3D) systems in a finite geometry. The distribution function is calculated within the φ4 field theory f
Publikováno v:
Physica A: Statistical Mechanics and its Applications. 251:439-451
Previous theories have predicted that O(n) symmetric systems in a finite cubic geometry with periodic boundary conditions have universal finite-size scaling functions near criticality in d>4 dimensions. On the basis of exact results for the O(n) symm
Publikováno v:
Physica A: Statistical Mechanics and its Applications. 235:555-572
We study the effect of an external field h on the order-parameter distribution function near the critical point of O(n) symmetric three-dimensional (3D) systems in a finite geometry. The distribution function is calculated within the ϕ4 field theory