Zobrazeno 1 - 10
of 15
pro vyhledávání: '"V. D. Calhoun"'
Publikováno v:
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Autor:
P. Boonyakitanont, B. Gabrielson, I. Belyaeva, P. Olikkal, J. Songsiri, Y. P. Wang, T. W. Wilson, V. D. Calhoun, J. M. Stephen, T. Adali
Publikováno v:
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2022
This paper proposes an independent component analysis (ICA)-based framework for exploring associations between neural signals measured with magnetoencephalography (MEG) and non-neuroimaging data of healthy subjects. Our proposed framework contains me
Autor:
S. M. Motlaghian, A. Belger, J. R. Bustillo, A. Faghiri, J. M. Ford, A. Iraji, K. Lim, D. H. Mathalon, R. Miller, B. A. Mueller, D. O’Leary, G. Pearlson, S. G. Potkin, A. Preda, T.G. van Erp, V. D. Calhoun
Most dynamic functional connectivity in fMRI data is focused on linear correlations, and to our knowledge, no study has studied whole brain explicitly nonlinear dynamic relationships within the data. While some approaches have attempted to study over
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3667e8f6718f0e4ab806ee16550cbc08
https://doi.org/10.1101/2022.06.22.497262
https://doi.org/10.1101/2022.06.22.497262
Publikováno v:
ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Independent component analysis (ICA) of multi-subject functional magnetic resonance imaging (fMRI) data has proven useful in providing a fully multivariate summary that can be used for multiple purposes. ICA can identify patterns that can discriminat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fb4b9f7c2e638d121b934470238593df
Autor:
I. F. Akyildiz, M. Pierobon, S. Balasubramaniam, J. Zhang, T. Chen, S. Zhong, J. Wang, W. Zhang, X. Zuo, R. G. Maunder, L. Hanzo, J. Chen, J. Liu, V. D. Calhoun, A. B. Magoun
Publikováno v:
Proceedings of the IEEE. 107:866-867
Kniha
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Magnetic Resonance in Medicine. 48:180-192
In BOLD fMRI a series of MR images is acquired and examined for task-related amplitude changes. These functional changes are small, so it is important to maximize detection efficiency. Virtually all fMRI processing strategies utilize magnitude inform
Publikováno v:
NeuroImage. 20(3)
Independent component analysis (ICA), a data-driven approach utilizing high-order statistical moments to find maximally independent sources, has found fruitful application in functional magnetic resonance imaging (fMRI). A limitation of the standard