Zobrazeno 1 - 10
of 150
pro vyhledávání: '"V. A. Solonnikov"'
Publikováno v:
Rendiconti di Matematica e delle Sue Applicazioni, Vol 29, Iss 1, Pp 117-132 (2009)
We study a linear problem of mixed type and we prove existence, uniqueness results and coercive estimates in H¨older spaces. Moreover we establish weighted estimates in H¨older spaces and a stability result for a non-linear system of mixed type.
Externí odkaz:
https://doaj.org/article/3d3ee83c6a384be7bff899b6a48a69bc
Autor:
V. A. Solonnikov
Publikováno v:
Le Matematiche, Vol 46, Iss 1, Pp 449-460 (1991)
We consider a free boundary problem of incompressible viscous flow governing the motion of an isolated liquid mass. The liquid is subjected to capillary forces at the boundary and the coefficient of the surface tension depends on the temperature sati
Externí odkaz:
https://doaj.org/article/968a39901c294fd182094221662dff9d
Autor:
V. A. Solonnikov
Publikováno v:
St. Petersburg Mathematical Journal. 32:91-137
Autor:
I. V. Denisova, V. A. Solonnikov
Publikováno v:
Collected Papers in Honor of Yoshihiro Shibata ISBN: 9783031192517
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f5b748ccc2d04503ab046d6715ac61e8
https://doi.org/10.1007/978-3-031-19252-4_3
https://doi.org/10.1007/978-3-031-19252-4_3
Autor:
V. A. Solonnikov
Publikováno v:
St. Petersburg Mathematical Journal. 30:347-377
Autor:
I. V. Denisova, V. A. Solonnikov
Publikováno v:
Motion of a Drop in an Incompressible Fluid ISBN: 9783030700522
In this chapter, the solvability of linear problem ( 1.1.7) is investigated. A single existence theorem in the Holder spaces is formulated for all values \(\sigma \geqslant 0\).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b6e0a4d042027a8b5630646896222462
https://doi.org/10.1007/978-3-030-70053-9_4
https://doi.org/10.1007/978-3-030-70053-9_4
Autor:
I. V. Denisova, V. A. Solonnikov
Publikováno v:
Motion of a Drop in an Incompressible Fluid ISBN: 9783030700522
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e19860066ba9be10e009dea087ef567c
https://doi.org/10.1007/978-3-030-70053-9_1
https://doi.org/10.1007/978-3-030-70053-9_1
Autor:
V. A. Solonnikov, I. V. Denisova
Publikováno v:
Motion of a Drop in an Incompressible Fluid ISBN: 9783030700522
This chapter deals with the unsteady motion of two viscous incompressible fluids separated by a closed unknown interface Γt. Both liquids have a finite volume; they are bounded by a given surface Σ where the adhesion condition holds. On interface
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9edb823f6fad2fc725bf5bb9701f17d4
https://doi.org/10.1007/978-3-030-70053-9_8
https://doi.org/10.1007/978-3-030-70053-9_8
Autor:
V. A. Solonnikov, I. V. Denisova
Publikováno v:
Motion of a Drop in an Incompressible Fluid ISBN: 9783030700522
Under the assumption of a sufficiently small initial velocity vector field and a small deviation of the initial surface of the drop from a sphere, the unique solvability of the nonlinear problem is proved in the anisotropic Holder spaces for all t >
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::35b4439db7d35a97ed52ed2d22a2f476
https://doi.org/10.1007/978-3-030-70053-9_7
https://doi.org/10.1007/978-3-030-70053-9_7
Autor:
I. V. Denisova, V. A. Solonnikov
Publikováno v:
Motion of a Drop in an Incompressible Fluid ISBN: 9783030700522
The chapter is devoted to the problem of the unsteady motion of a viscous drop in an incompressible fluid which is contained in a bounded vessel. It is assumed that the fluids are subjected to mass forces and capillary ones on the interface. We prove
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c20903106760e37e33c8bf4898487f27
https://doi.org/10.1007/978-3-030-70053-9_12
https://doi.org/10.1007/978-3-030-70053-9_12