Zobrazeno 1 - 9
of 9
pro vyhledávání: '"V. A. Dorodnitsyn"'
Autor:
E. I. Kaptsov, V. A. Dorodnitsyn
Publikováno v:
Open Communications in Nonlinear Mathematical Physics, Vol Special Issue in Memory of... (2024)
Invariant finite-difference schemes for the one-dimensional shallow water equations in the presence of a magnetic field for various bottom topographies are constructed. Based on the results of the group classification recently carried out by the auth
Externí odkaz:
https://doaj.org/article/25d093a6e8864d638463eca85a7e8600
Symmetries of the one-dimensional shallow water magnetohydrodynamics equations (SMHD) in Gilman's approximation are studied. The SMHD equations are considered in case of a plane and uneven bottom topography in Lagrangian and Eulerian coordinates. Sym
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a95f1ee9de58fa88f404d661fcfc51f9
Publikováno v:
Nonlinear Physical Science ISBN: 9789811646829
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e29864dbf1f82fa8ab323f502edb3ec9
https://doi.org/10.1007/978-981-16-4683-6_2
https://doi.org/10.1007/978-981-16-4683-6_2
Autor:
V. A. Dorodnitsyn, E. I. Kaptsov
Publikováno v:
Differential Equations. 52:926-941
We construct invariant difference schemes for the parametric system of Ermakov equations. By using a difference analog of the Noether theorem, we write out the first three difference integrals of the system. The obtained schemes are integrable exactl
Autor:
V. A. Dorodnitsyn, E. I. Kaptsov
Publikováno v:
Computational Mathematics and Mathematical Physics. 53:1153-1178
A number of publications (indicated in the Introduction) are overviewed that address the group properties, first integrals, and integrability of difference equations and meshes approximating second-order ordinary differential equations with symmetrie
Autor:
V. A. Dorodnitsyn
Publikováno v:
Journal of Soviet Mathematics. 55:1490-1517
We consider formal groups of transformations on the space of differential and net (finite-difference) variables. We show that preservation of meaning of difference derivatives under transformations necessarily leads to Lie-Backlund group. We derive f
Autor:
A. G. El’kin, M. G. M. van Doorn, A. K. Gushchin, L. D. Kudryavtsev, V. V. Rumyantsev, V. I. Sobolev, B. A. Efimov, N. Kh. Rozov, V. T. Bazylev, I. A. Kvasnikov, B. I. Golubov, A. A. Konyushkov, L. N. Eshukov, P. P. Korovkin, A. V. Efimov, A. A. Zakharov, S. M. Vorazhin, Yu. N. Subbotin, A. L. Onishchik, D. P. Kostomarov, N. M. Nagornyĭ, V. E. Plisko, N. M. Khalfina, S. A. Stepanov, M. S. Nikulin, S. I. Adyan, P. S. Soltan, A. V. Zabrodin, L. A. Bokut’, S. Yu. Maslov, G. E. Mints, E. M. Chirka, M. V. Fedoryuk, N. K. Nikol’skiĭ, B. S. Pavlov, A. L. Shmel’kin, A. V. Arkhangel’skiĭ, A. B. Bakushinskiĭ, D. A. Ponomarev, I. V. Dolgachev, A. A. Boyarkin, A. V. Mikhalev, M. I. Voĭtsekhovskiĭ, A. V. Prokhorov, L. E. Reĭzin’, A. M. Il’in, G. N. Dyubin, D. P. Zhelobenko, V. P. Chistyakov, A. V. Khokhlov, V. A. Dushskiĭ, M. Sh. Farber, E. D. Solomentsev, V. D. Kukin, A. A. Mal’tsev, M. A. Shtan’ko, T. P. Lukashenko, Rédigé Par C. Mayer, E. M. Nikishin, B. M. Bredikhin, R. A. Minlos, N. G. Ushakov, V. A. Skvortsov, V. E. Tarakanov, V. I. Danilov, G. P. Tolstov, D. V. Anosov, S. N. Artemov, L. A. Skornyakov, E. V. Shikin, I. V. Proskuryakov, Yu. A. Kuznetsov, A. B. Ivanov, V. I. Ponomarev, A. V. Chernavskiĭ, D. A. Suprunenko, V. I. Nechaev, Yu. I. Merzlyakov, O. A. Ivanova, V. V. Fedorchuk, V. L. Popov, N. A. Karpova, R. A. Prokhorova, M. M. Potapov, V. D. Mazurov, Yu. B. Rudyak, A. V. Gulin, A. A. Samarskiĭ, N. S. Bakhvalov, L. A. Oganesyan, Yu. M. Davydov, V. E. Tarankanov, A. B. Vasil’eva, E. V. Pankrat’ev, R. L. Dobrushin, V. V. Prelov, A. A. Dezin, E. F. Mishchenko, A. V. Bitsadze, I. N. Vekua, A. M. Nakhushev, I. A. Shishmarev, E. I. Moiseev, V. D. Kupradze, F. P. Vasil’ev, N. N. Kuznetsov, B. L. Rozhdestvenskiĭ, I. P. Makarov, S. S. Gaĭsaryan, A. D. Myshkis, M. S. Nikol’skiĭ, A. I. Subbotin, Ü. Lumiste, A. V. Pogorelov, D. V. Alekseevskiĭ, A. F. Filippov, V. I. Shulikovskiĭ, A. I. Shtern, S. P. Novikov, V. A. Morozov, O. G. Smolyanov, V. M. Tikhomirov, V. M. Babich, V. A. Chuyanov, L. I. Kamynin, Yu. A. Rozanov, V. A. Iskovskikh, B. A. Pasynkov, P. S. Aleksandrov, L. I. Sedov, D. D. Sokolov, V. G. Sprindzhuk, S. M. Voronin, Yu. V. Matiyasevich, A. N. Parshin, V. G. Krechet, M. Sh. Tsalenko, A. I. Loginov, A. F. Lavrik, L. N. Bol’shev, A. Yanushauskas, A. F. Leont’ev, E. A. Bredikhina, I. B. Vapnyarskiĭ, V. M. Solodov, V. B. Kudryavtsev, E. B. Vinberg, A. P. Terekhin, Yu. I. Zhuravlev, G. A. Sardanashvili, S. M. Sirota, E. G. D’yakonov, E. N. Kuz’min, N. M. Mitrofanova, A. P. Khusu, S. K. Sobolev, V. N. Tutubalin, V. S. Vladimirov, V. A. Dorodnitsyn, I. S. Iokhvidov, K. S. Swirskiĭ, E. G. Goluzina, Yu. V. Prokhorov, V. V. Sazonov, V. D. Belousov, D. M. Smirnov, L. P. Kuptsov, I. I. Volkov, L. V. Kuz’min, M. Shirinbekov, V. N. Grishin, I. N. Vrublevskaya, M. M. Popov, F. A. Kabakov, A. F. Shapkin, V. K. Domanskiĭ, G. S. Chogoshvili, V. P. Palamodov, A. I. Markusevich, S. Ya. Khavinson, A. I. Kostrikin, A. S. Parkhomenko, M. I. Voĭsekhovskiĭ, T. S. Fofanova, W. Glagolev, E. G. Sklyarenko, A. A. Kirillov, K. Bulota, E. B. Yanovskaya, I. Kh. Sabitov, E. G. Sobolevskaya, L. A. Molotkov, S. A. Ashmanov, V. G. Karmanov, E. N. Berezkin, A. V. Lykov
Publikováno v:
Encyclopaedia of Mathematics ISBN: 9780792329749
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cf855d54672932a7a08af396c3a6daf4
https://doi.org/10.1007/978-1-4899-3795-7_2
https://doi.org/10.1007/978-1-4899-3795-7_2
Autor:
V. A. Dorodnitsyn
Publikováno v:
Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics ISBN: 9789401049085
The present paper is concerned with the continuous groups of transformations in a space of discrete variables. The criteria of invariance of difference equations, difference grids and difference functionals are obtained. The finite-difference analogy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c4544a6547c29b912ddb582f390a553b
https://doi.org/10.1007/978-94-011-2050-0_18
https://doi.org/10.1007/978-94-011-2050-0_18
Publikováno v:
Journal of Soviet Mathematics. 41:1222-1292
A survey is given of results of investigating unbounded solutions (regimes with peaking) of quasilinear parabolic equations of nonlinear heat conduction with a source. Principal attention is devoted to the investigation of the property of localizatio