Zobrazeno 1 - 10
of 208
pro vyhledávání: '"V Sutherland"'
Autor:
Andrew V. Sutherland
Publikováno v:
Discrete Analysis (2021)
Stronger arithmetic equivalence, Discrete Analysis 2021:23, 23 pp. An algebraic number field is a subfield $K$ of $\mathbb C$ that is finite-dimensional when considered as a vector space over $\mathbb Q$, which implies that every element of $K$ is a
Externí odkaz:
https://doaj.org/article/948d92633821476e97b6870cfc7e1365
Publikováno v:
Case Reports in Obstetrics and Gynecology, Vol 2018 (2018)
The management of retained products of conception (RPOC) may be medical or surgical. Surgical options include blind curettage, ultrasound guided curettage, or curettage under direct vision via hysteroscopy. The definitive management of patients prese
Externí odkaz:
https://doaj.org/article/df17cb6e53984b46a106cd737680ff36
Autor:
ANDREW V. SUTHERLAND
Publikováno v:
Forum of Mathematics, Sigma, Vol 4 (2016)
Let $E$ be an elliptic curve without complex multiplication (CM) over a number field $K$ , and let $G_{E}(\ell )$ be the image of the Galois representation induced by the action of the absolute Galois group of $K$ on the $\ell$ -torsion subgroup
Externí odkaz:
https://doaj.org/article/38de7cd5f1664e1585b2ce215ea86f15
Autor:
Alex J. Best, Jonathan Bober, Andrew R. Booker, Edgar Costa, John E. Cremona, Maarten Derickx, Min Lee, David Lowry-Duda, David Roe, Andrew V. Sutherland, John Voight
Publikováno v:
Best, A, Bober, J W, Booker, A R, Costa, E, Cremona, J, Derickx, M, Lee, M, Lowry-Duda, D, Roe, D, Sutherland, A & Voight, J 2022, Computing Classical Modular Forms . in Arithmetic Geometry, Number Theory, and Computation . 1 edn, Simons Symposia, Springer, pp. 131-213 . https://doi.org/10.1007/978-3-030-80914-0_4
Arithmetic Geometry, Number Theory, and Computation ISBN: 9783030809133
Arithmetic Geometry, Number Theory, and Computation ISBN: 9783030809133
We discuss practical and some theoretical aspects of computing a database of classical modular forms in the L-functions and modular forms database (LMFDB).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::879c5a896458127637ff83559a899488
https://hdl.handle.net/1983/06c1c2b4-5d75-4edb-9d9f-fae622fc3bdb
https://hdl.handle.net/1983/06c1c2b4-5d75-4edb-9d9f-fae622fc3bdb
Publikováno v:
Forum of Mathematics, Sigma. 10
We discuss the$\ell $-adic case of Mazur’s ‘Program B’ over$\mathbb {Q}$: the problem of classifying the possible images of$\ell $-adic Galois representations attached to elliptic curvesEover$\mathbb {Q}$, equivalently, classifying the rational
We present efficient algorithms for counting points on a smooth plane quartic curve $X$ modulo a prime $p$. We address both the case where $X$ is defined over $\mathbb F_p$ and the case where $X$ is defined over $\mathbb Q$ and $p$ is a prime of good
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::984b0ea5d8b29cf3a10a78a5b29f114c
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Arithmetic Geometry: Computation and Applications. :167-175
Let X and Y be curves over a finite field. In this article we explore methods to determine whether there is a rational map from Y to X by considering L-functions of certain covers of X and Y and propose a specific family of covers to address the spec
Autor:
Andrew R. Booker, Andrew V. Sutherland
Publikováno v:
Booker, A R & Sutherland, A 2021, ' On a question of Mordell ', Proceedings of the National Academy of Sciences of the United States of America, vol. 118, no. 11, e2022377118 . https://doi.org/10.1073/pnas.2022377118
Proceedings of the National Academy of Sciences of the United States of America
Proceedings of the National Academy of Sciences of the United States of America
Significance A Diophantine equation is a polynomial equation to which one seeks solutions in integers. There is a notable disparity between the difficulty of stating Diophantine equations and that of solving them. This feature was formalized in the 2
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7b25243c610cde789a2dd212603b13f8
https://research-information.bris.ac.uk/en/publications/a2538bef-ff6b-4e9d-8ca4-1f4bc767b604
https://research-information.bris.ac.uk/en/publications/a2538bef-ff6b-4e9d-8ca4-1f4bc767b604
Autor:
Andrew V. Sutherland
We describe the practical implementation of an average polynomial-time algorithm for counting points on superelliptic curves defined over $\mathbb Q$ that is substantially faster than previous approaches. Our algorithm takes as input a superelliptic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a65c1a65fec5af772b4862ea1c3ac808