Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Vötsch, Maximilian"'
Expander decompositions of graphs have significantly advanced the understanding of many classical graph problems and led to numerous fundamental theoretical results. However, their adoption in practice has been hindered due to their inherent intricac
Externí odkaz:
http://arxiv.org/abs/2406.14111
We introduce efficient $(1+\varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem, where the inputs are a matrix $\mathbf{A}\in\{0,1\}^{n\times d}$, a rank parameter $k>0$, as well as an accuracy parameter $\varepsil
Externí odkaz:
http://arxiv.org/abs/2306.01869
Motivated by fairness requirements in communication networks, we introduce a natural variant of the online paging problem, called \textit{min-max} paging, where the objective is to minimize the maximum number of faults on any page. While the classica
Externí odkaz:
http://arxiv.org/abs/2212.03016
Publikováno v:
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) ISBN: 9781611977554
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5bd12160fb200e6dbaf4a9faa2c672e7
https://doi.org/10.1137/1.9781611977554.ch57
https://doi.org/10.1137/1.9781611977554.ch57
Autor:
Vötsch, Maximilian
Das Thema dieser Arbeit sind kofinitäre Gruppen, eine spezielle Klasse an Untergruppen der unendlichen Permutationsgruppen. Wir beginnen mit einer Übersicht der algebraischen Resultate für diese Gruppen. Die wichtigsten Resultate in diesem Kapi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::22371c90a79dbaa26094cda5ead6017a