Zobrazeno 1 - 10
of 137
pro vyhledávání: '"Vétois Jérôme"'
Autor:
Vétois Jérôme
Publikováno v:
Advanced Nonlinear Studies, Vol 24, Iss 3, Pp 543-552 (2024)
In this note, we obtain a classification result for positive solutions to the critical p-Laplace equation in Rn ${\mathbb{R}}^{n}$ with n ≥ 4 and p > p n for some number pn∈n3,n+13 ${p}_{n}\in \left(\frac{n}{3},\frac{n+1}{3}\right)$ such that p
Externí odkaz:
https://doaj.org/article/2d9e70075d984d74b69394f484c1bdf5
Autor:
Premoselli, Bruno, Vétois, Jérôme
We consider the problem of minimizing the second conformal eigenvalue of the conformal Laplacian in a conformal class of metrics with renormalized volume. We prove, in dimensions $n\in\left\{3,\dotsc,10\right\}$, that a minimizer for this problem doe
Externí odkaz:
http://arxiv.org/abs/2408.07823
Autor:
Vétois Jérôme, Wang Shaodong
Publikováno v:
Advances in Nonlinear Analysis, Vol 8, Iss 1, Pp 715-724 (2017)
We extend Chen, Wei and Yan’s constructions of families of solutions with unbounded energies [5] to the case of cubic nonlinear Schrödinger equations in the optimal dimension four.
Externí odkaz:
https://doaj.org/article/e625b38df0554d5383a0aac83865be48
Autor:
Flynn, Joshua, Vétois, Jérôme
We obtain Liouville-type results for solutions to the CR Yamabe equation in $\mathbb{H}^n$, which extend a result obtained by Jerison and Lee for solutions in $L^{2+2/n}(\mathbb{H}^n)$. We obtain our results under either pointwise conditions or integ
Externí odkaz:
http://arxiv.org/abs/2310.14048
Autor:
Vétois, Jérôme
In this note, we obtain a classification result for positive solutions to the critical p-Laplace equation in $\mathbb{R}^n$ with $n\ge4$ and $p>p_n$ for some number $p_n\in\left(\frac{n}{3},\frac{n+1}{3}\right)$ such that $p_n\sim\frac{n}{3}+\frac{1}
Externí odkaz:
http://arxiv.org/abs/2304.02600
Autor:
Vétois, Jérôme
Publikováno v:
Potential Analysis (2023)
On a smooth, closed Riemannian manifold $(M,g)$ of dimension $n\ge3$ with positive scalar curvature and not conformally diffeomorphic to the standard sphere, we prove that the only conformal metrics to $g$ with constant Q-curvature of order 4 are the
Externí odkaz:
http://arxiv.org/abs/2210.07444
Autor:
Premoselli, Bruno, Vétois, Jérôme
We investigate the blow-up behavior of sequences of sign-changing solutions for the Yamabe equation on a Riemannian manifold $(M,g)$ of positive Yamabe type. For each dimension $n\ge11$, we describe the value of the minimal energy threshold at which
Externí odkaz:
http://arxiv.org/abs/2206.08770
Autor:
Premoselli, Bruno, Vétois, Jérôme
Publikováno v:
Journal de Math\'ematiques Pures et Appliqu\'ees 167 (2022), 257-293
On a smooth, closed Riemannian manifold $\left(M,g\right)$ of dimension $n\ge3$, we consider the stationary Schr\"odinger equation $\Delta_gu+h_0u=\left|u\right|^{2^*-2}u$, where $\Delta_g:=-\text{div}_g\nabla$, $h_0\in C^1\left(M\right)$ and $2^* :=
Externí odkaz:
http://arxiv.org/abs/2201.05679
Autor:
Mazumdar, Saikat, Vétois, Jérôme
Publikováno v:
Discrete and Continuous Dynamical Systems 42 (2022), no. 11, 5273-5287
On a smooth, closed Riemannian manifold, we study the question of proportionality of components, also called synchronization, of vector-valued solutions to nonlinear elliptic Schr\"odinger systems with constant coefficients. In particular, we obtain
Externí odkaz:
http://arxiv.org/abs/2106.12256
Given a sufficiently symmetric domain $\Omega\Subset\mathbb{R}^2$, for any $k\in \mathbb{N}\setminus \{0\}$ and $\beta>4\pi k$ we construct blowing-up solutions $(u_\varepsilon)\subset H^1_0(\Omega)$ to the Moser-Trudinger equation such that as $\var
Externí odkaz:
http://arxiv.org/abs/2104.04959