Zobrazeno 1 - 10
of 310
pro vyhledávání: '"V, Vivekanand"'
Introduction: Automated Lung X-Ray Abnormality Detection System is the application which distinguish the normal x-ray images from infected x-ray images and highlight area considered for prediction, with the recent pandemic a need to have a non-conven
Externí odkaz:
http://arxiv.org/abs/2404.04635
Autor:
Anuradha Gupta, Sandeep Kumar, Yashi Bajpai, Kavita Chaturvedi, Parul Johri, Rajesh K. Tiwari, V. Vivekanand, Mala Trivedi
Publikováno v:
Frontiers in Microbiology, Vol 15 (2024)
Pharmaceuticals, recognized for their life-saving potential, have emerged as a concerning class of micropollutants in the environment. Even at minute concentrations, chronic exposure poses a significant threat to ecosystems. Various pharmaceutically
Externí odkaz:
https://doaj.org/article/a22b1284a7b64da79f4c2f116b353e4c
Autor:
V., Vivekanand, Mishra, Deepak
Publikováno v:
In Neural Networks May 2023 162:425-442
Autor:
V, Vivekanand, Mishra, Deepak
Publikováno v:
In Internet of Things September 2020 11
Autor:
V. Vivekanand, Deepak Mishra
Publikováno v:
International Journal of Data Science and Analytics. 15:391-406
Autor:
Meenakshi Rajput, Khushboo Choudhary, Manish Kumar, V. Vivekanand, Aakash Chawade, Rodomiro Ortiz, Nidhi Pareek
Publikováno v:
Plants, Vol 10, Iss 9, p 1914 (2021)
With the rapid population growth, there is an urgent need for innovative crop improvement approaches to meet the increasing demand for food. Classical crop improvement approaches involve, however, a backbreaking process that cannot equipoise with inc
Externí odkaz:
https://doaj.org/article/aecaa0c8678043738714756957df641e
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Neural Networks March 2015 63:66-78
Denoising is a fundamental challenge in the field of digital image processing and computer vision. Many of the denoising algorithms operate on segments of images in which non-locally distributed similar segments are identified and grouped to form sub
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::68061d8d20f686cb0fe0013d2d30c2c6
https://doi.org/10.21203/rs.3.rs-2406262/v1
https://doi.org/10.21203/rs.3.rs-2406262/v1