Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Uysal, Samiye Aynur"'
Autor:
YILMAZ, Hülya, UYSAL, Samiye Aynur
Publikováno v:
Volume: 10, Issue: 1 103-107
Konuralp Journal of Mathematics
Konuralp Journal of Mathematics
The object of the paper is to study the generalized Einstein tensor $G(X,Y)$ on almost pseudo-Ricci symmetric manifolds, $A(PRS)_{n}$. Considering the generalized Einstein tensor $G(X,Y)$ as conservative, cyclic parallel and Codazzi type, it is inves
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=tubitakulakb::0e2608f7781606eac30a7d074420d4ec
https://dergipark.org.tr/tr/pub/konuralpjournalmath/issue/31498/1069271
https://dergipark.org.tr/tr/pub/konuralpjournalmath/issue/31498/1069271
In this study, we consider a manifold equipped with semi symmetric metric connection whose the torsion tensor satisfies a special condition. We investigate some properties of the Ricci tensor and the curvature tensor of this manifold . We obtain a ne
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2662::d424bc384d12f8871655437c1dd48461
https://hdl.handle.net/11376/140
https://hdl.handle.net/11376/140
Uysal, Samiye Aynur (Dogus Author) In 1970, Yano, [1], studied Riemannian manifolds which admit semisymmetric metric connections whose curvature tensors vanish (see also [2]). The properties of a Riemannian manifold admitting a semi-symmetric metric
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2662::1c20794734d149964012c61f37f60d0f
https://hdl.handle.net/11376/2820
https://hdl.handle.net/11376/2820
Uysal, Samiye Aynur (Dogus Author) In this paper we introduced α-metrically Chebyshev nets in a Riemannian manifold with semi-symmetric metric connection. We also studied conformal motions with trajectories defined by the components of these nets in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2662::a73ab45637e089c222d0332df05f37a9
https://hdl.handle.net/11376/2821
https://hdl.handle.net/11376/2821
In the first part of our work, some results are given for a Riemannian manifold with semi-symmetric metric connection. In the second part, some special vector fields, such as torse-forming vector fields, recurrent vector fields and concurrent vector
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2662::2698943083e286fce6b5b72a8ba63c1d
https://hdl.handle.net/11376/1452
https://hdl.handle.net/11376/1452
Uysal, Samiye Aynur (Dogus Author) In [3], Mishra and Pandey defined Ricci quarter-symmetric metric connection in Riemanian manifold. In [5],Uysal and Doğan defined D-recurrent spaces with semi-symmetric metric connection and constructed an example
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a66bd5f23d26680df83e591664a3697e
https://hdl.handle.net/11376/2815
https://hdl.handle.net/11376/2815
Autor:
Dinç, Cemile Elvan
RICCI QUARTER-SIMETRIK METRİK KONNEKSİYONLU D-REKÜRANT UZAYLAR ÖZET Walker, reküran Riemanrı uzaylarını inceleyerek reküran Riemann uzaylanna örnek vermiştir [5]. Zayıf simetrik uzay kavramı, Tamassy ve Binh tarafından ortaya konmuştur
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_____10208::4bb241e43b9aeb1469b8e2d0598f7396
https://acikbilim.yok.gov.tr/handle/20.500.12812/655739
https://acikbilim.yok.gov.tr/handle/20.500.12812/655739
Autor:
Doğan, Rojbin Özlem
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2003
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2003
Bu çalışmanın ilk iki bölümünde, daha önce P. Enghi
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2003
Bu çalışmanın ilk iki bölümünde, daha önce P. Enghi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::461d713e11e16286b46bd0963909d7ba
http://hdl.handle.net/11527/2890
http://hdl.handle.net/11527/2890
Autor:
Ünal, Ayşe Füsün
Bu çalışmada, semi-simetrik konneksiyonlu Weyl manifoldları incelenmiştir. Çalışmanın birinci bölümünde, Weyl manifoldları ile ilgili temel tanımlar ve özellikler hatırlatılmıştır. İkinci bölümde, Weyl manifoldu üzerinde semi-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_____10208::3dc9753a7a766cdf4ce62a2dc9301255
https://acikbilim.yok.gov.tr/handle/20.500.12812/657274
https://acikbilim.yok.gov.tr/handle/20.500.12812/657274
Autor:
Özen, Füsun
WEYL UZAYLARININ KONH ARMONİK DONUŞUMU ÖZET Bu çalışmada, gij metrik tensörü ve Tk komplemanter vektörü ile verilen Wn(gij,Tk) Weyl uzaylarımla konharmonik dönüşümü tammlanmış ve bu dönüşüm altında, bazı özel Weyl uzayların
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_____10208::f2cfb940c18e83eb4a2b416457ece9d4
https://acikbilim.yok.gov.tr/handle/20.500.12812/658459
https://acikbilim.yok.gov.tr/handle/20.500.12812/658459