Zobrazeno 1 - 10
of 51
pro vyhledávání: '"Uwe Semmelmann"'
Publikováno v:
Mathematics Research Reports. 3:21-34
Autor:
Paul-Andi Nagy, Uwe Semmelmann
Publikováno v:
Illinois Journal of Mathematics. 66
Publikováno v:
International Journal of Mathematics. 33
In this paper, we study the stability problem for the Einstein metrics on Sasaki Einstein and on complete nearly parallel [Formula: see text] manifolds. In the Sasaki case we show linear instability if the second Betti number is positive. Similarly,
Publikováno v:
Geometriae Dedicata. 205:113-127
Motivated by the study of Killing forms on compact Riemannian manifolds of negative sectional curvature, we introduce the notion of generalized vector cross products on $\mathbb{R}^n$ and give their classification. Using previous results about Killin
Autor:
Paul-Andi Nagy, Uwe Semmelmann
We describe the second order obstruction to deformation for nearly $G_2$ structures on compact manifolds. Building on work of B.Alexandrov and U.Semmelmann this allows proving rigidity under deformation for the proper nearly $G_2$ structure on the Al
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aa879750c26130de9afb93a8d83f1fbe
http://arxiv.org/abs/2007.01657
http://arxiv.org/abs/2007.01657
Publikováno v:
Annals of Global Analysis and Geometry
We show that a strict, nearly Kähler 6-manifold with either second or third Betti number nonzero is linearly unstable with respect to the $$\nu $$ν-entropy of Perelman and hence is dynamically unstable for the Ricci flow.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::136548937ff67c6fa6e10a8ed5d945bb
https://hdl.handle.net/21.11116/0000-0005-F8B5-721.11116/0000-0005-F8B7-5
https://hdl.handle.net/21.11116/0000-0005-F8B5-721.11116/0000-0005-F8B7-5
Autor:
Uwe Semmelmann, Gregor Weingart
In this article we study the stability problem for the Einstein-Hilbert functional on compact symmetric spaces following and completing the seminal work of Koiso on the subject. We classify in detail the irreducible representations of simple Lie alge
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::02ee629a94737e0de6001a6b55d77468
Publikováno v:
North-Western European Journal of Mathematics
North-Western European Journal of Mathematics, Laboratoires de Mathématiques du Nord-Pas-de-Calais, In press, 6, pp.119-136
HAL
North-Western European Journal of Mathematics, Laboratoires de Mathématiques du Nord-Pas-de-Calais, In press, 6, pp.119-136
HAL
International audience; We characterise those complete Kähler manifolds supporting a nonconstant real-valued function with critical points whose Hessian is nonnegative, complex linear, has pointwise two eigenvalues and whose gradient is a Hessian-ei
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::2376f86d1de6dcc746530b05b4c3b178
https://hal.archives-ouvertes.fr/hal-02483865
https://hal.archives-ouvertes.fr/hal-02483865
Publikováno v:
Differential Geometry and its Applications. 70:101628
We study conformal Killing forms on compact 6-dimensional nearly Kahler manifolds. Our main result concerns forms of degree 3. Here we give a classification showing that all conformal Killing 3-forms are linear combinations of dω and its Hodge dual
Autor:
Uwe Semmelmann, Yasushi Homma
We study the Rarita-Schwinger operator on compact Riemannian spin manifolds. In particular, we find examples of compact Einstein manifolds with positive scalar curvature where the Rarita-Schwinger operator has a non-trivial kernel. For positive quate
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::44ad4bd941b3352c1db8b68f15ce06c2