Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Utsab Barman"'
Publikováno v:
Han, Jingguang, Barman, Utsab, Hayes, Jer, Du, Jinhua ORCID: 0000-0002-3267-4881 , Burgin, Edward and Wan, Dadong (2018) NextGen AML: distributed deep learning based language technologies to augment anti money laundering Investigation. In: 56th Annual Meeting of the Association for Computational Linguistics-System Demonstrations, 15-20 July 201, Melbourne, Australia.
ACL (4)
ACL (4)
Most of the current anti money laundering (AML) systems, using handcrafted rules, are heavily reliant on existing structured databases, which are not capable of effectively and efficiently identifying hidden and complex ML activities, especially thos
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b25497eb7f529bb4c10f68bf3866b0de
http://doras.dcu.ie/23358/
http://doras.dcu.ie/23358/
Publikováno v:
Barman, Utsab, Wagner, Joachim ORCID: 0000-0002-8290-3849 and Foster, Jennifer ORCID: 0000-0002-7789-4853 (2016) Part-of-speech tagging of code-mixed social media content: pipeline, stacking and joint modelling. In: Second Workshop on Computational Approaches to Code Switching, 2 Nov 2016, Austin, Texas, USA.
CodeSwitch@EMNLP
CodeSwitch@EMNLP
Multilingual users of social media sometimes use multiple languages during conversation. Mixing multiple languages in content is known as code-mixing. We annotate a subset of a trilingual code-mixed corpus (Barman et al., 2014) with part-of-speech (P
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5c86c311befe7f891033ad572a66b3a0
http://doras.dcu.ie/23067/
http://doras.dcu.ie/23067/
Publikováno v:
Barman, Utsab, Das, Amitava ORCID: 0000-0003-3418-463X , Wagner, Joachim ORCID: 0000-0002-8290-3849 and Foster, Jennifer ORCID: 0000-0002-7789-4853 (2014) Code mixing: a challenge for language identification in the language of social media. In: First Workshop on Computational Approaches to Code Switching, 25 Oct 2014, Doha, Qatar.
CodeSwitch@EMNLP
CodeSwitch@EMNLP
In social media communication, multilingual speakers often switch between languages, and, in such an environment, automatic language identification becomes both a necessary and challenging task. In this paper, we describe our work in progress on the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5f796bcc43a6a3fa05b2a5963b576234
Publikováno v:
First Workshop on Computational Approaches to Code Switching, 127-132
STARTPAGE=127;ENDPAGE=132;TITLE=First Workshop on Computational Approaches to Code Switching
CodeSwitch@EMNLP
Barman, Utsab, Wagner, Joachim ORCID: 0000-0002-8290-3849, Chrupała, Grzegorz ORCID: 0000-0001-9498-6912 and Foster, Jennifer ORCID: 0000-0002-7789-4853 (2014) DCU-UVT: Word-level language classification with code-mixed data. In: First Workshop on Computational Approaches to Code Switching, 25 Oct 2014, Doha, Qatar.
STARTPAGE=127;ENDPAGE=132;TITLE=First Workshop on Computational Approaches to Code Switching
CodeSwitch@EMNLP
Barman, Utsab, Wagner, Joachim ORCID: 0000-0002-8290-3849
This paper describes the DCU-UVT team’s participation in the Language Identification in Code-Switched Data shared task in the Workshop on Computational Approaches to Code Switching. Word-level classification experiments were carried out using a sim
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58fbb0db6ce76312dfa62ef6fef78d64
https://research.tilburguniversity.edu/en/publications/5381e879-7e60-480e-8141-1376ef32a5c6
https://research.tilburguniversity.edu/en/publications/5381e879-7e60-480e-8141-1376ef32a5c6
Publikováno v:
Advances in Artificial Intelligence ISBN: 9783642253232
MICAI (1)
ResearcherID
MICAI (1)
ResearcherID
We present a Textual Entailment (TE) recognition system that uses semantic features based on the Universal Networking Language (UNL). The proposed TE system compares the UNL relations in both the text and the hypothesis to arrive at the two-way entai
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1be11bf73bed4354db3579da10bdcd29
https://doi.org/10.1007/978-3-642-25324-9_23
https://doi.org/10.1007/978-3-642-25324-9_23