Zobrazeno 1 - 10
of 189
pro vyhledávání: '"Usui, Satoshi"'
Autor:
Honma, Takahiro, Usui, Satoshi
Let $\Lambda$ be an arbitrary monomial algebra. We investigate the stable category $\underline{\operatorname{Gproj}}^{\mathbb{Z}}\Lambda$ of graded Gorenstein-projective $\Lambda$-modules and the orbit category $\underline{\operatorname{Gproj}}^{\mat
Externí odkaz:
http://arxiv.org/abs/2407.04912
Autor:
Usui, Satoshi
Publikováno v:
J. Algebra 657 (2024), 1--25
For an eventually periodic module, we have the degree and the period of its first periodic syzygy. This paper studies the former under the name \lq\lq periodic dimension\rq\rq. We give a bound for the periodic dimension of an eventually periodic modu
Externí odkaz:
http://arxiv.org/abs/2301.06242
Autor:
Usui, Satoshi
Publikováno v:
In Journal of Algebra 1 November 2024 657:1-25
Autor:
Usui, Satoshi
The singularity category of a ring makes only the modules of finite projective dimension vanish among the modules, so the singularity category is expected to characterize a homological property of modules of infinite projective dimension. In this pap
Externí odkaz:
http://arxiv.org/abs/2110.06626
Autor:
Usui, Satoshi
Tate-Hochschild cohomology of an algebra is a generalization of ordinary Hochschild cohomology, which is defined on positive and negative degrees and has a ring structure. Our purpose of this paper is to study the eventual periodicity of an algebra b
Externí odkaz:
http://arxiv.org/abs/2107.03326
Publikováno v:
In Analytica Chimica Acta 29 April 2024 1300
Autor:
Usui, Satoshi
We study cup product and cap product in Tate-Hochschild theory for a finite dimensional Frobenius algebra. We show that Tate-Hochschild cohomology ring equipped with cup product is isomorphic to singular Hochschild cohomology ring introduced by Wang.
Externí odkaz:
http://arxiv.org/abs/1912.03594
We study the existence of a Batalin-Vilkovisky differential on the complete cohomology ring of a Frobenius algebra.We construct a Batalin-Vilkovisky differential on the complete cohomology ring in the case of Frobenius algebras with diagonalizable Na
Externí odkaz:
http://arxiv.org/abs/1905.04887
Publikováno v:
In Journal of Algebra 1 September 2021 581:226-277
Autor:
Usui, Satoshi, Koibuchi, Hiroshi
Publikováno v:
Polymers 8, 284 (2016)
Finsler geometric surface model is studied as a coarse-grained model for membranes of three-component such as DOPC, DPPC and Cholesterol. To understand the phase separation of liquid ordered (DPPC rich) $L_o$ and the liquid disordered (DOPC rich) $L_
Externí odkaz:
http://arxiv.org/abs/1605.00054