Zobrazeno 1 - 10
of 121
pro vyhledávání: '"Ushangi Goginava"'
Publikováno v:
Heliyon, Vol 10, Iss 8, Pp e29585- (2024)
In the presented paper we consider a sequence and its Nörlud and a generalized mean derived from a matrix transformation. Furthermore, sufficient conditions for the matrix are found which implies the converges of the generalized matrix means from th
Externí odkaz:
https://doaj.org/article/fae95af87595455d99d0300786a1b32e
Autor:
Ushangi Goginava, Károly Nagy
Publikováno v:
Mathematics, Vol 10, Iss 14, p 2458 (2022)
The presented paper discusses the matrix summability of the Walsh–Fourier series. In particular, we discuss the convergence of matrix transforms in L1 space and in CW space in terms of modulus of continuity and matrix transform variation. Moreover,
Externí odkaz:
https://doaj.org/article/ca0582203c7349f09f41cf9c638aabb8
Autor:
Ushangi Goginava, Károly Nagy
Publikováno v:
Journal of Function Spaces and Applications, Vol 8, Iss 2, Pp 181-200 (2010)
The main aim of this paper is to prove that there exists a martingale f∈ H1/2 such that the maximal Fejér operator with respect to Walsh-Kaczmarz system does not belong to the space L1/2. For the two-dimensional case, we prove that there exists a
Externí odkaz:
https://doaj.org/article/aafbf6b88fab4248a18c0134ba045a68
Autor:
Ushangi Goginava, Károly Nagy
Publikováno v:
Journal of Function Spaces and Applications, Vol 2012 (2012)
The main aim of this paper is to prove that the logarithmic means of quadratical partial sums of the double Walsh-Kaczmarz series does not improve the convergence in measure. In other words, we prove that for any Orlicz space, which is not a subspace
Externí odkaz:
https://doaj.org/article/891cd900762c4dbb8aea5d858402ff54
Autor:
Ushangi Goginava, Károly Nagy
Publikováno v:
The Journal of Geometric Analysis. 33
Autor:
Ushangi Goginava, Károly Nagy
Publikováno v:
Acta Scientiarum Mathematicarum.
Autor:
György Gát, Ushangi Goginava
Publikováno v:
Arabian Journal of Mathematics. 11:241-259
In the present paper, we prove the almost everywhere convergence and divergence of subsequences of Cesàro means with zero tending parameters of Walsh–Fourier series.
Autor:
György Gát, Ushangi Goginava
Publikováno v:
Periodica Mathematica Hungarica.
In this paper we discuss some convergence and divergence properties of subsequences of Cesàro means with varying parameters of Walsh–Fourier series. We give necessary and sufficient conditions for the convergence regarding the weighted variation o
Autor:
Ushangi Goginava
Publikováno v:
Positivity. 26
Autor:
Ushangi Goginava, Salem Said
Publikováno v:
Filomat. 35:2189-2208
It is proved that the maximal operators of subsequences of N?rlund logarithmic means and Ces?ro means with varying parameters of Walsh-Fourier series is bounded from the dyadic Hardy spaces Hp to Lp. This implies an almost everywhere convergence for