Zobrazeno 1 - 10
of 183
pro vyhledávání: '"Uriel Frisch"'
Publikováno v:
Physical Review Research, Vol 2, Iss 3, p 033202 (2020)
Finite-dimensional, inviscid equations of hydrodynamics, obtained through a Fourier-Galerkin projection, thermalize with an energy equipartition. Hence, numerical solutions of such inviscid equations, which typically must be Galerkin-truncated, show
Externí odkaz:
https://doaj.org/article/2b844b530efe4032a017c4016c853e50
Publikováno v:
Physical Review Research
Physical Review Research, American Physical Society, 2020, 2 (3), ⟨10.1103/PhysRevResearch.2.033202⟩
Physical Review Research, American Physical Society, 2020
Physical Review Research, American Physical Society, 2020, 2 (3), ⟨10.1103/PhysRevResearch.2.033202⟩
Physical Review Research, American Physical Society, 2020
Finite-dimensional, inviscid equations of hydrodynamics, such as the zero-viscosity, one-dimensional Burgers equation or the three-dimensional incompressible Euler equation, obtained through a Fourier-Galerkin projection, thermalise---mediated throug
Publikováno v:
The European Physical Journal H, vol 43, iss 4-5
EUROPEAN PHYSICAL JOURNAL H, vol 43, iss 4-5
EUROPEAN PHYSICAL JOURNAL H, vol 43, iss 4-5
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bf804cfdf49a6b0bc6ca8756c053e8ff
https://escholarship.org/uc/item/0dr2g4mj
https://escholarship.org/uc/item/0dr2g4mj
The present paper is a companion to the paper by Villone and Rampf (2017), titled "Hermann Hankel's On the general theory of motion of fluids, an essay including an English translation of the complete Preisschrift from 1861" together with connected d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d5689c688b26264ea69d44a737b72fdb
http://arxiv.org/abs/1707.01882
http://arxiv.org/abs/1707.01882
Autor:
Nicolas Besse, Uriel Frisch
Publikováno v:
Journal of Fluid Mechanics
Cauchy invariants are now viewed as a powerful tool for investigating the Lagrangian structure of three-dimensional (3D) ideal flow (Frisch & Zheligovsky, Commun. Math. Phys., vol. 326, 2014, pp. 499-505, Podvigina et al., J. Comput. Phys., vol. 306,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2b8ad0936d33b0153eda5679b38a5971
http://arxiv.org/abs/1701.01592
http://arxiv.org/abs/1701.01592
Autor:
Cornelius Rampf, Uriel Frisch
Publikováno v:
Monthly Notices of the Royal Astronomical Society
Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P-Oxford Open Option A, 2017, 471 (1), pp.671-679. ⟨10.1093/mnras/stx1613⟩
Mon.Not.Roy.Astron.Soc.
Mon.Not.Roy.Astron.Soc., 2017, 471 (1), pp.671-679. ⟨10.1093/mnras/stx1613⟩
Mon.Not.Roy.Astron.Soc., 2017, 471 (1), pp.671-679. 〈10.1093/mnras/stx1613〉
Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P-Oxford Open Option A, 2017, 471 (1), pp.671-679. ⟨10.1093/mnras/stx1613⟩
Mon.Not.Roy.Astron.Soc.
Mon.Not.Roy.Astron.Soc., 2017, 471 (1), pp.671-679. ⟨10.1093/mnras/stx1613⟩
Mon.Not.Roy.Astron.Soc., 2017, 471 (1), pp.671-679. 〈10.1093/mnras/stx1613〉
Blow-up of solutions for the cosmological fluid equations, often dubbed shell-crossing or orbit crossing, denotes the breakdown of the single-stream regime of the cold-dark-matter fluid. At this instant, the velocity becomes multi-valued and the dens
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::73fff887305368f47aa736f7556a81ad
https://hal.archives-ouvertes.fr/hal-01582412
https://hal.archives-ouvertes.fr/hal-01582412
Autor:
Vladislav Zheligovsky, Uriel Frisch
Publikováno v:
Journal of Fluid Mechanics. 749:404-430
It is known that the Eulerian and Lagrangian structures of fluid flow can be drastically different; for example, ideal fluid flow can have a trivial (static) Eulerian structure, while displaying chaotic streamlines. Here we show that ideal flow with
Autor:
Uriel Frisch, Nicolas Besse
Publikováno v:
Communications in Mathematical Physics
The 3D incompressible Euler equation is an important research topic in the mathematical study of fluid dynamics. Not only is the global regularity for smooth initial data an open issue, but the behaviour may also depend on the presence or absence of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d2bc156ee118e591ba5cbdb8690ddfb5
http://arxiv.org/abs/1603.09219
http://arxiv.org/abs/1603.09219
We present theoretical and numerical results for the one-dimensional stochastically forced Burgers equation decimated on a fractal Fourier set of dimension $D$. We investigate the robustness of the energy transfer mechanism and of the small-scale sta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2f02890b9c22aab00ee530ed0830c5c6
http://hdl.handle.net/2108/173964
http://hdl.handle.net/2108/173964
Publikováno v:
Journal of Computational Physics
Journal of Computational Physics, Elsevier, 2010, 229, pp.5043-5061. ⟨10.1016/j.jcp.2010.03.025⟩
Journal of Computational Physics, Elsevier, 2010, 229, pp.5043-5061. ⟨10.1016/j.jcp.2010.03.025⟩
We present three novel forms of the Monge-Ampere equation, which is used, e.g., in image processing and in reconstruction of mass transportation in the primordial Universe. The central role in this paper is played by our Fourier integral form, for wh