Zobrazeno 1 - 10
of 207
pro vyhledávání: '"Urgese, A."'
Neuromorphic models take inspiration from the human brain by adopting bio-plausible neuron models to build alternatives to traditional Machine Learning (ML) and Deep Learning (DL) solutions. The scarce availability of dedicated hardware able to actua
Externí odkaz:
http://arxiv.org/abs/2407.04076
Autor:
Chen, Zihao, Xiao, Zhili, Akl, Mahmoud, Leugring, Johannes, Olajide, Omowuyi, Malik, Adil, Dennler, Nik, Harper, Chad, Bose, Subhankar, Gonzalez, Hector A., Eshraghian, Jason, Pignari, Riccardo, Urgese, Gianvito, Andreou, Andreas G., Shankar, Sadasivan, Mayr, Christian, Cauwenberghs, Gert, Chakrabartty, Shantanu
We introduce NeuroSA, a neuromorphic architecture specifically designed to ensure asymptotic convergence to the ground state of an Ising problem using an annealing process that is governed by the physics of quantum mechanical tunneling using Fowler-N
Externí odkaz:
http://arxiv.org/abs/2406.05224
Autor:
Pedersen, Jens E., Abreu, Steven, Jobst, Matthias, Lenz, Gregor, Fra, Vittorio, Bauer, Felix C., Muir, Dylan R., Zhou, Peng, Vogginger, Bernhard, Heckel, Kade, Urgese, Gianvito, Shankar, Sadasivan, Stewart, Terrence C., Sheik, Sadique, Eshraghian, Jason K.
Publikováno v:
Nat Commun 15, 8122 (2024)
Spiking neural networks and neuromorphic hardware platforms that simulate neuronal dynamics are getting wide attention and are being applied to many relevant problems using Machine Learning. Despite a well-established mathematical foundation for neur
Externí odkaz:
http://arxiv.org/abs/2311.14641
Autor:
Müller-Cleve, Simon F., Quintana, Fernando M., Fra, Vittorio, Galindo, Pedro L., Perez-Peña, Fernando, Urgese, Gianvito, Bartolozzi, Chiara
Neuromorphic computing relies on spike-based, energy-efficient communication, inherently implying the need for conversion between real-valued (sensory) data and binary, sparse spiking representation. This is usually accomplished using the real valued
Externí odkaz:
http://arxiv.org/abs/2310.16983
Autor:
Yik, Jason, Berghe, Korneel Van den, Blanken, Douwe den, Bouhadjar, Younes, Fabre, Maxime, Hueber, Paul, Ke, Weijie, Khoei, Mina A, Kleyko, Denis, Pacik-Nelson, Noah, Pierro, Alessandro, Stratmann, Philipp, Sun, Pao-Sheng Vincent, Tang, Guangzhi, Wang, Shenqi, Zhou, Biyan, Ahmed, Soikat Hasan, Joseph, George Vathakkattil, Leto, Benedetto, Micheli, Aurora, Mishra, Anurag Kumar, Lenz, Gregor, Sun, Tao, Ahmed, Zergham, Akl, Mahmoud, Anderson, Brian, Andreou, Andreas G., Bartolozzi, Chiara, Basu, Arindam, Bogdan, Petrut, Bohte, Sander, Buckley, Sonia, Cauwenberghs, Gert, Chicca, Elisabetta, Corradi, Federico, de Croon, Guido, Danielescu, Andreea, Daram, Anurag, Davies, Mike, Demirag, Yigit, Eshraghian, Jason, Fischer, Tobias, Forest, Jeremy, Fra, Vittorio, Furber, Steve, Furlong, P. Michael, Gilpin, William, Gilra, Aditya, Gonzalez, Hector A., Indiveri, Giacomo, Joshi, Siddharth, Karia, Vedant, Khacef, Lyes, Knight, James C., Kriener, Laura, Kubendran, Rajkumar, Kudithipudi, Dhireesha, Liu, Yao-Hong, Liu, Shih-Chii, Ma, Haoyuan, Manohar, Rajit, Margarit-Taulé, Josep Maria, Mayr, Christian, Michmizos, Konstantinos, Muir, Dylan, Neftci, Emre, Nowotny, Thomas, Ottati, Fabrizio, Ozcelikkale, Ayca, Panda, Priyadarshini, Park, Jongkil, Payvand, Melika, Pehle, Christian, Petrovici, Mihai A., Posch, Christoph, Renner, Alpha, Sandamirskaya, Yulia, Schaefer, Clemens JS, van Schaik, André, Schemmel, Johannes, Schmidgall, Samuel, Schuman, Catherine, Seo, Jae-sun, Sheik, Sadique, Shrestha, Sumit Bam, Sifalakis, Manolis, Sironi, Amos, Stewart, Matthew, Stewart, Kenneth, Stewart, Terrence C., Timcheck, Jonathan, Tömen, Nergis, Urgese, Gianvito, Verhelst, Marian, Vineyard, Craig M., Vogginger, Bernhard, Yousefzadeh, Amirreza, Zohora, Fatima Tuz, Frenkel, Charlotte, Reddi, Vijay Janapa
Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accu
Externí odkaz:
http://arxiv.org/abs/2304.04640
Autor:
Jens E. Pedersen, Steven Abreu, Matthias Jobst, Gregor Lenz, Vittorio Fra, Felix Christian Bauer, Dylan Richard Muir, Peng Zhou, Bernhard Vogginger, Kade Heckel, Gianvito Urgese, Sadasivan Shankar, Terrence C. Stewart, Sadique Sheik, Jason K. Eshraghian
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-15 (2024)
Abstract Spiking neural networks and neuromorphic hardware platforms that simulate neuronal dynamics are getting wide attention and are being applied to many relevant problems using Machine Learning. Despite a well-established mathematical foundation
Externí odkaz:
https://doaj.org/article/31b61ff6c22042c0a55ec54f03b8f39b
Autor:
Sara Gostoli, Francesco Ferrara, Ludovica Quintavalle, Sara Tommasino, Graziano Gigante, Maria Montecchiarini, Alessia Urgese, Francesco Guolo, Regina Subach, Angelica D’Oronzo, Annamaria Polifemo, Federica Buonfiglioli, Vincenzo Cennamo, Chiara Rafanelli
Publikováno v:
BMC Psychology, Vol 12, Iss 1, Pp 1-11 (2024)
Abstract Psychological characterization of patients affected by Inflammatory Bowel Disease (IBD) focuses on comorbidity with psychiatric disorders, somatization or alexithymia. Whereas IBD patients had higher risk of stable anxiety and depression for
Externí odkaz:
https://doaj.org/article/f4ef3cedd3724958849568e3addd9706
Autor:
Simon F. Müller-Cleve, Fernando M. Quintana, Vittorio Fra, Pedro L. Galindo, Fernando Perez-Peña, Gianvito Urgese, Chiara Bartolozzi
Publikováno v:
SoftwareX, Vol 27, Iss , Pp 101759- (2024)
Neuromorphic computing relies on event-based, energy-efficient communication, inherently implying the need for conversion between real-valued (sensory) data and binary, sparse spiking representation. This is usually accomplished by using the real-val
Externí odkaz:
https://doaj.org/article/660863bb39ad4f84ad6ea9f6bf0254ef
Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern Recognition on Neuromorphic Hardware
Autor:
Muller-Cleve, Simon F, Fra, Vittorio, Khacef, Lyes, Pequeno-Zurro, Alejandro, Klepatsch, Daniel, Forno, Evelina, Ivanovich, Diego G, Rastogi, Shavika, Urgese, Gianvito, Zenke, Friedemann, Bartolozzi, Chiara
Spatio-temporal pattern recognition is a fundamental ability of the brain which is required for numerous real-world activities. Recent deep learning approaches have reached outstanding accuracies in such tasks, but their implementation on conventiona
Externí odkaz:
http://arxiv.org/abs/2205.15864
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.