Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Urena, Antonio J."'
Autor:
Urena, Antonio J.
The Lambert problem consists in connecting two given points in a given lapse of time under the gravitational influence of a fixed center. While this problem is very classical, we are concerned here with situations where friction forces act alongside
Externí odkaz:
http://arxiv.org/abs/2302.06334
Autor:
Albouy, Alain, Ureña, Antonio J.
Publikováno v:
Celestial Mechanics and Dynamical Astronomy (2023) 135:18
We consider the Keplerian arcs around a fixed Newtonian center joining two prescribed distinct positions in a prescribed flight time. We prove that, putting aside the "opposition case" where infinitely many planes of motion are possible, there are at
Externí odkaz:
http://arxiv.org/abs/2302.06013
Autor:
Albouy, Alain, Ureña, Antonio J.
Publikováno v:
Communications in Contemporary Mathematics, 25 (2023) no 2250041
Consider the equation of the linear oscillator $u"+u=h(\theta)$, where the forcing term $h:\mathbb R\to\mathbb R$ is $2\pi$-periodic and positive. We show that the existence of a periodic solution implies the existence of a positive solution. To this
Externí odkaz:
http://arxiv.org/abs/2201.09272
We consider autonomous Newtonian systems with Coriolis forces in two and three dimensions and study the existence of branches of periodic orbits emanating from equilibria. We investigate both degenerate and nondegenerate situations. While Lyapunov's
Externí odkaz:
http://arxiv.org/abs/2108.13312
Autor:
Albouy, Alain, Urena, Antonio J.
Publikováno v:
Eur. Phys. J. Spec. Top. 229 (2020) 1405-1417
We give simple proofs of some simple statements concerning the Lambert problem. We first restate and reprove the known existence and uniqueness results for the Keplerian arc. We also prove in some cases that the elapsed time is a convex function of n
Externí odkaz:
http://arxiv.org/abs/2001.09301
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Fonda, Alessandro, Ureña, Antonio J.
We present a higher-dimensional version of the Poincar\'e-Birkhoff theorem which applies to Poincar\'e time maps of Hamiltonian systems. The maps under consideration are neither required to be close to the identity nor to have a monotone twist. The a
Externí odkaz:
http://arxiv.org/abs/1805.02980
Publikováno v:
In Journal of Differential Equations 25 November 2022 338:441-473
Autor:
Fonda, Alessandro, Ureña, Antonio J.
Publikováno v:
In Journal de mathématiques pures et appliquées September 2019 129:131-152
Autor:
Urena, Antonio J.
We consider periodic second-order equations having an ordered pair of lower and upper solutions and show the existence of asymptotic trajectories heading towards the maximal and minimal periodic solutions which lie between them.
Externí odkaz:
http://arxiv.org/abs/1006.2319