Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Urbani, Cristina"'
In this work we analyse the small-time reachability properties of a nonlinear parabolic equation, by means of a bilinear control, posed on a torus of arbitrary dimension $d$. Under a saturation hypothesis on the control operators, we show the small-t
Externí odkaz:
http://arxiv.org/abs/2407.10521
We study the exact controllability of the evolution equation \begin{equation*} u'(t)+Au(t)+p(t)Bu(t)=0 \end{equation*} where $A$ is a nonnegative self-adjoint operator on a Hilbert space $X$ and $B$ is an unbounded linear operator on $X$, which is do
Externí odkaz:
http://arxiv.org/abs/2303.04465
Autor:
Cannarsa, Piermarco, Lucarini, Valerio, Martinez, Patrick, Urbani, Cristina, Vancostenoble, Judith
We study a two-layer energy balance model, that allows for vertical exchanges between a surface layer and the atmosphere. The evolution equations of the surface temperature and the atmospheric temperature are coupled by the emission of infrared radia
Externí odkaz:
http://arxiv.org/abs/2211.15430
We consider the linear degenerate wave equation, on the interval $(0, 1)$ $$ w_{tt} - (x^\alpha w_x)_x = p(t) \mu (x) w, $$ with bilinear control $p$ and Neumann boundary conditions. We study the controllability of this nonlinear control system, loca
Externí odkaz:
http://arxiv.org/abs/2112.00636
Partial differential equation on networks have been widely investigated in the last decades in view of their application to quantum mechanics (Schr\"odinger type equations) or to the analysis of flexible structures (wave type equations). Nevertheless
Externí odkaz:
http://arxiv.org/abs/2111.02250
In a separable Hilbert space $X$, we study the controlled evolution equation \begin{equation*} u'(t)+Au(t)+p(t)Bu(t)=0, \end{equation*} where $A\geq-\sigma I$ ($\sigma\geq0$) is a self-adjoint linear operator, $B$ is a bounded linear operator on $X$,
Externí odkaz:
http://arxiv.org/abs/2105.05732
Autor:
Cannarsa, Piermarco, Urbani, Cristina
The aim of this paper is to prove the superexponential stabilizability to the ground state solution of a degenerate parabolic equation of the form \begin{equation*} u_t(t,x)+(x^{\alpha}u_x(t,x))_x+p(t)x^{2-\alpha}u(t,x)=0,\qquad t\geq0,x\in(0,1) \end
Externí odkaz:
http://arxiv.org/abs/1910.06198
We prove rapid stabilizability to the ground state solution for a class of abstract parabolic equations of the form \begin{equation*} u'(t)+Au(t)+p(t)Bu(t)=0,\qquad t\geq0 \end{equation*} where the operator $-A$ is a self-adjoint accretive operator o
Externí odkaz:
http://arxiv.org/abs/1910.06802
In a separable Hilbert space $X$, we study the linear evolution equation \begin{equation*} u'(t)+Au(t)+p(t)Bu(t)=0, \end{equation*} where $A$ is an accretive self-adjoint linear operator, $B$ is a bounded linear operator on $X$, and $p\in L^2_{loc}(0
Externí odkaz:
http://arxiv.org/abs/1811.08806
Publikováno v:
SIAM Journal on Mathematical Analysis; 2023, Vol. 55 Issue 6, p6617-6653, 37p