Zobrazeno 1 - 10
of 14 853
pro vyhledávání: '"Upper triangular matrices"'
We compute the graded polynomial identities for the variety of graded algebras generated by the Lie algebra of upper triangular matrices of order 3 over an arbitrary field and endowed with an elementary grading. We investigate the Specht property for
Externí odkaz:
http://arxiv.org/abs/2412.13325
Let $K \langle X\rangle$ be the free associative algebra freely generated over the field $K$ by the countable set $X = \{x_1, x_2, \ldots\}$. If $A$ is an associative $K$-algebra, we say that a polynomial $f(x_1,\ldots, x_n) \in K \langle X\rangle$ i
Externí odkaz:
http://arxiv.org/abs/2411.06964
Publikováno v:
Communications in Mathematics 33 (2025), no. 1
We study the algebra of upper triangular matrices endowed with a group grading and a homogeneous involution over an infinite field. We compute the asymptotic behaviour of its (graded) star-codimension sequence. It turns out that the asymptotic growth
Externí odkaz:
http://arxiv.org/abs/2408.00087
Autor:
Gubarev, Vsevolod
We describe all Rota-Baxter operators $R$ of weight zero on the algebra $U_3(F)$ of upper-triangular matrices of order three over a field of characteristic 0. For this, we apply the following three ingredients: properties of $R(1)$, conjugation with
Externí odkaz:
http://arxiv.org/abs/2404.00289
We study the graded polynomial identities with a homogeneous involution on the algebra of upper triangular matrices endowed with a fine group grading. We compute their polynomial identities and a basis of the relatively free algebra, considering an a
Externí odkaz:
http://arxiv.org/abs/2402.02671
Autor:
Li, Guanyu
We establish a connection between generalised commuting schemes $C_g(U_n)$ of higher genus $g$, which are associated with a group scheme $U_n$ consisting of upper triangular unipotent matrices, and the representation homology $HR_*(\Sigma_g,U_n)$ of
Externí odkaz:
http://arxiv.org/abs/2403.13953
We compute the graded polynomial identities of the infinite dimensional upper triangular matrix algebra over an arbitrary field. If the grading group is finite, we prove that the set of graded polynomial identities admits a finite basis. We find cond
Externí odkaz:
http://arxiv.org/abs/2402.10839
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.