Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Upmeier, Markus"'
Autor:
Joyce, Dominic, Upmeier, Markus
This is the second paper of a series that develops a bordism-theoretic point of view on orientations in enumerative geometry. The first paper is arXiv:2312.06818. This paper focuses on those applications to gauge theory that can be established purely
Externí odkaz:
http://arxiv.org/abs/2312.10516
Autor:
Upmeier, Markus
We show that orientations and Floer gradings for elliptic differential operators can be propagated through bordisms. This is based on a new perspective on APS indices for elliptic boundary value problems over the real numbers. Several applications to
Externí odkaz:
http://arxiv.org/abs/2312.06818
Autor:
Gross, Jacob, Upmeier, Markus
We give a topological construction of graded vertex F-algebras that generalizes Joyce's vertex algebra to complex-oriented homology. Given an H-space X with a BU(1)-action, a certain choice of K-theory class, and a complex oriented homology theory E,
Externí odkaz:
http://arxiv.org/abs/2109.15131
Autor:
Upmeier, Markus
We develop a general theory of pushforward operations for principal $G$-bundles equipped with a certain type of orientation. In the case $G=BU(1)$ and orientations in twisted K-theory we construct two pushforward operations, the projective Euler oper
Externí odkaz:
http://arxiv.org/abs/2101.10990
Autor:
Joyce, Dominic, Upmeier, Markus
Let $X$ be a compact Calabi-Yau 3-fold, and write $\mathcal M,\bar{\mathcal M}$ for the moduli stacks of objects in coh$(X),D^b$coh$(X)$. There are natural line bundles $K_{\mathcal M}\to\mathcal M$, $K_{\bar{\mathcal M}}\to\bar{\mathcal M}$, analogu
Externí odkaz:
http://arxiv.org/abs/2001.00113
Autor:
Biswas, Indranil, Upmeier, Markus
Given a central extension of Lie groups, we study the classification problem of lifting the structure group together with a given connection. For reductive structure groups we introduce a new connective structure on the lifting gerbe associated to th
Externí odkaz:
http://arxiv.org/abs/1910.10402
Autor:
Joyce, Dominic, Upmeier, Markus
Let $X$ be a compact manifold, $G$ a Lie group, $P \to X$ a principal $G$-bundle, and $\mathcal{B}_P$ the infinite-dimensional moduli space of connections on $P$ modulo gauge. For a real elliptic operator $E_\bullet$ we previously studied orientation
Externí odkaz:
http://arxiv.org/abs/1908.03524
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Upmeier, Markus
We develop a categorical index calculus for elliptic symbol families. The categorified index problems we consider are a secondary version of the traditional problem of expressing the index class in K-theory in terms of differential-topological data.
Externí odkaz:
http://arxiv.org/abs/1901.10818
Autor:
Joyce, Dominic, Upmeier, Markus
Suppose $(X, g)$ is a compact, spin Riemannian 7-manifold, with Dirac operator $D$. Let $G$ be SU$(m)$ or U$(m)$, and $E\to X$ be a rank $m$ complex bundle with $G$-structure. Write ${\mathcal B}_E$ for the infinite-dimensional moduli space of connec
Externí odkaz:
http://arxiv.org/abs/1811.02405