Zobrazeno 1 - 10
of 102
pro vyhledávání: '"Unterberger, Jérémie"'
Autor:
Unterberger, Jeremie, Nghe, Philippe
Autocatalysis underlies the ability of chemical and biochemical systems to replicate. Recently, Blokhuis et al. gave a stoechiometric definition of autocatalysis for reaction networks, stating the existence of a combination of reactions such that the
Externí odkaz:
http://arxiv.org/abs/2109.01130
Publikováno v:
J. Phys. A: Math. Theor. 51 (2018) 185001
We study the unitary dynamics of a one-dimensional gas of hard-core bosons trapped into a harmonic potential which varies periodically in time with frequency $\omega(t)$. Such periodic systems can be classified into orbits of different monodromies co
Externí odkaz:
http://arxiv.org/abs/1801.07462
Autor:
Unterberger, Jeremie
We consider the hydrodynamic limit in the macroscopic regime of the coupled system of stochastic differential equations, $ d\lambda_t^i=\frac{1}{\sqrt{N}} dW_t^i - V'(\lambda_t^i) dt+ \frac{\beta}{2N} \sum_{j\not=i} \frac{dt}{\lambda^i_t-\lambda^j_t}
Externí odkaz:
http://arxiv.org/abs/1801.02973
Autor:
Magnen, Jacques, Unterberger, Jérémie
We study in the present article the Kardar-Parisi-Zhang (KPZ) equation $$ \partial_t h(t,x)=\nu\Delta h(t,x)+\lambda |\nabla h(t,x)|^2 +\sqrt{D}\, \eta(t,x), \qquad (t,x)\in\mathbb{R}_+\times\mathbb{R}^d $$ in $d\ge 3$ dimensions in the perturbative
Externí odkaz:
http://arxiv.org/abs/1702.03122
Autor:
Unterberger, Jeremie
We consider a general Langevin dynamics for the one-dimensional N-particle Coulomb gas with confining potential $V$ at temperature $\beta$. These dynamics describe for $\beta=2$ the time evolution of the eigenvalues of $N\times N$ random Hermitian ma
Externí odkaz:
http://arxiv.org/abs/1603.09373
Autor:
Unterberger, Jeremie
We show that the homogeneous viscous Burgers equation $(\partial_t-\eta\Delta) u(t,x)+(u\cdot\nabla)u(t,x)=0,\ (t,x)\in{\mathbb{R}}_+\times{\mathbb{R}}^d$ $(d\ge 1, \eta>0)$ has a globally defined smooth solution if the initial condition $u_0$ is a s
Externí odkaz:
http://arxiv.org/abs/1510.01539
Autor:
Unterberger, Jeremie
We prove that the viscous Burgers equation has a globally defined smooth solution in all dimensions provided the initial condition and the forcing term are smooth and bounded together with their derivatives. Such solutions may have infinite energy. T
Externí odkaz:
http://arxiv.org/abs/1503.05145
Autor:
Unterberger, Jeremie
We study in this series of articles the Kardar-Parisi-Zhang (KPZ) equation $$ \partial_t h(t,x)=\nu\Delta h(t,x)+\lambda V(|\nabla h(t,x)|) +\sqrt{D}\, \eta(t,x), \qquad x\in{\mathbb{R}}^d $$ in $d\ge 1$ dimensions. The forcing term $\eta$ in the rig
Externí odkaz:
http://arxiv.org/abs/1307.1980
Autor:
Unterberger, Jeremie
We define a new type of wavelet frame adapted to the study of wave equations, that we call Minkowski curvelets, by reference to the curvelets introduced by Cand\`es, Demanet and Donoho. These space-time, strongly anisotropic, directional wavelets hav
Externí odkaz:
http://arxiv.org/abs/1204.2688