Zobrazeno 1 - 10
of 10 930
pro vyhledávání: '"Unknot"'
Given any link $L\subseteq S^3$, we show that it is possible to embed an unknot $U$ in its complement so that the link $L\cup U$ satisfies the Meridional Rank Conjecture (MRC). The bridge numbers in our construction fit into the equality $\beta(L\cup
Externí odkaz:
http://arxiv.org/abs/2411.10642
Autor:
Applebaum, Taylor, Blackwell, Sam, Davies, Alex, Edlich, Thomas, Juhász, András, Lackenby, Marc, Tomašev, Nenad, Zheng, Daniel
We have developed a reinforcement learning agent that often finds a minimal sequence of unknotting crossing changes for a knot diagram with up to 200 crossings, hence giving an upper bound on the unknotting number. We have used this to determine the
Externí odkaz:
http://arxiv.org/abs/2409.09032
Autor:
Melikhov, Sergey A.
In 1974, D. Rolfsen asked: Is every knot in $S^3$ isotopic (=homotopic through embeddings) to a PL knot or, equivalently, to the unknot? In particular, is the Bing sling isotopic to a PL knot? We show that the Bing sling is not isotopic to any PL kno
Externí odkaz:
http://arxiv.org/abs/2406.09365
The Jones problem is a question whether there is a non-trivial knot with the trivial Jones polynomial in one variable $q$. The answer to this fundamental question is still unknown despite numerous attempts to explore it. In braid presentation the cas
Externí odkaz:
http://arxiv.org/abs/2402.02553
Autor:
Krishna, Siddhi
We study positive braid knots (the knots in the three-sphere realized as positive braid closures) through the lens of the L-space conjecture. This conjecture predicts that if $K$ is a non-trivial positive braid knot, then for all $r < 2g(K)-1$, the 3
Externí odkaz:
http://arxiv.org/abs/2312.00196
Autor:
Asplund, Johan
We associate to a quiver and a subquiver $(Q,F)$ a stopped Weinstein manifold $X$ whose Legendrian attaching link is a singular Legendrian unknot link $\varLambda$. We prove that the relative Ginzburg algebra of $(Q,F)$ is quasi-isomorphic to the Che
Externí odkaz:
http://arxiv.org/abs/2311.03330
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Nogueira, João M., Salgueiro, António
In this paper we study further when tangles embed into the unknot, the unlink or a split link. In particular, we study obstructions to these properties through geometric characterizations, tangle sums and colorings. As an application we determine whe
Externí odkaz:
http://arxiv.org/abs/2110.15645
Autor:
Campisi, Marion, Cazet, Nicholas, Crncevic, David, Fellman, Tasha, Kessler, Phillip, Rieke, Nikolas, Srivastava, Vatsal, Torres, Luis
Publikováno v:
J. Knot Theory Ramif., Vol. 31, No. 11, 2250074 (2022)
The first two authors introduced vertex distortion and showed that the vertex distortion of the unknot is trivial. It was conjectured that the vertex distortion of a knot is trivial if and only if the knot is trivial. We will use Denne-Sullivan's bou
Externí odkaz:
http://arxiv.org/abs/2110.14119
Autor:
Luo, Wei, Zhu, Shengmao
Publikováno v:
Communications in Number Theory and Physics, Volume 13, Number 1, 81-100, 2019
The Labastida-Marin\~o-Ooguri-Vafa (LMOV) invariants are the open string BPS invariants which are expected to be integers based on the string duality conjecture from M-theory. Several explicit formulae of LMOV invariants for framed unknot have been o
Externí odkaz:
http://arxiv.org/abs/2106.02882