Zobrazeno 1 - 10
of 157
pro vyhledávání: '"Universal minimal flows"'
Autor:
KWIATKOWSKA, ALEKSANDRA
Publikováno v:
The Journal of Symbolic Logic, 2018 Dec 01. 83(4), 1618-1632.
Externí odkaz:
https://www.jstor.org/stable/26600392
Autor:
Bartošová, Dana
Every topological group $G$ has up to isomorphism a unique minimal $G$-flow that maps onto every minimal $G$-flow, the universal minimal flow $M(G).$ We show that if $G$ has a compact normal subgroup $K$ that acts freely on $M(G)$ and there exists a
Externí odkaz:
http://arxiv.org/abs/2103.10991
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Answering a question of Uspenskij, we prove that if $X$ is a closed manifold of dimension $2$ or higher or the Hilbert cube, then the universal minimal flow of $\mathrm{Homeo}(X)$ is not metrizable. In dimension $3$ or higher, we also show that the m
Externí odkaz:
http://arxiv.org/abs/1910.12220
Autor:
Kwiatkowska, Aleksandra
Publikováno v:
J. symb. log. 83 (2018) 1618-1632
We study universal minimal flows of the homeomorphism groups of generalized Wa\.zewski dendrites $W_P$, $P\subset\{3,4,\ldots,\omega\}$. If $P$ is finite, we prove that the universal minimal flow of of the homeomorphism group $H(W_P)$ is metrizable a
Externí odkaz:
http://arxiv.org/abs/1711.07869
We prove that, whenever $G$ is a Polish group with metrizable universal minimal flow $M(G)$, there exists a comeagre orbit in $M(G)$. It then follows that there exists an extremely amenable, closed, coprecompact $G^*$ of $G$ such that $M(G) = \hat{G/
Externí odkaz:
http://arxiv.org/abs/1602.01068
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Int. Math. Res. Not. IMRN, 5, 1285-1307, 2016
We prove that if the universal minimal flow of a Polish group $G$ is metrizable and contains a $G_\delta$ orbit $G \cdot x_0$, then it is isomorphic to the completion of the homogeneous space $G/G_{x_0}$ and show how this result translates naturally
Externí odkaz:
http://arxiv.org/abs/1404.6167
Autor:
Bartosova, Dana
In this paper, we compute universal minimal flows of groups of automorphisms of uncountable $\omega$-homogeneous graphs, $K_n$-free graphs, hypergraphs, partially ordered sets, and their extensions with an $\omega$-homogeneous ordering. We present an
Externí odkaz:
http://arxiv.org/abs/1204.0037
Autor:
Bartošová, Dana
It is a well-known fact, that the greatest ambit for a topological group $G$ is the Samuel compactification of $G$ with respect to the right uniformity on $G.$ We apply the original destription by Samuel from 1948 to give a simple computation of the
Externí odkaz:
http://arxiv.org/abs/1111.4995