Zobrazeno 1 - 10
of 993
pro vyhledávání: '"Unit cube"'
Publikováno v:
Journal of Mechanical Engineering, Vol 74, Iss 3, Pp 45-54 (2024)
This paper deals with the calibration of the polymer material PPC3TF2 using the PRF (Parallel Rheological Framework) material model implemented in the commercial software Abaqus. In order to reduce computational time, the unit cube model was used for
Externí odkaz:
https://doaj.org/article/2d851c38ab884605b302e2f07c5bf2bb
Autor:
Kanint Teerapabolarn
Publikováno v:
Songklanakarin Journal of Science and Technology (SJST), Vol 43, Iss 4, Pp 917-926 (2021)
This paper uses the Stein-Chen method to obtain uniform and non-uniform bounds in the Poisson approximation for the n-dimensional unit cube random graph. These bounds are re-established under the restriction of Poisson mean λ = 1. One bound is f
Externí odkaz:
https://doaj.org/article/efbaaa0855e84e32a875e6172443c94e
Autor:
I.V. Korytov
Publikováno v:
Учёные записки Казанского университета: Серия Физико-математические науки, Vol 158, Iss 3, Pp 336-349 (2016)
The paper is devoted to developing the proof of Clarkson's inequalities for periodic functions belonging to the Sobolev space. The norm of the space has not been considered earlier. The importance of the discussed issue rests with the need to develop
Externí odkaz:
https://doaj.org/article/b4d51d9ead9747f2a8cc98a618f6cd73
Publikováno v:
Numerical Algorithms. 90:951-962
We introduce a new configuration of node sets: crosslet grids for high-dimensional numerical integration, and develop symmetric quadrature rules on the unit cube of the d-dimensional Euclidean space based on these node sets. Our algorithms give the s
Autor:
Van Kien Nguyen, Dinh Dũng
Publikováno v:
Neural Networks. 142:619-635
We study the computation complexity of deep ReLU (Rectified Linear Unit) neural networks for the approximation of functions from the H\"older-Zygmund space of mixed smoothness defined on the $d$-dimensional unit cube when the dimension $d$ may be ver
Publikováno v:
Sbornik: Mathematics. 212:1180-1192
This paper is devoted to the study of a discrepancy-type characteristic -- the fixed volume discrepancy -- of the Korobov point sets in the unit cube. It was observed recently that this new characteristic allows us to obtain optimal rate of dispersio
Publikováno v:
Mathematical Programming. 192:149-175
Many practical integer programming problems involve variables with one or two-sided bounds. Dunkel and Schulz (A refined Gomory–Chvatal closure for polytopes in the unit cube, http://www.optimization-online.org/DB_FILE/2012/03/3404.pdf , 2012) cons
Autor:
Peter Frankl, Imre Bárány
Publikováno v:
The American Mathematical Monthly. 128:543-552
It is well known that a line can intersect at most 2n−1 unit squares of the n × n chessboard. Here we consider the three-dimensional version: how many unit cubes of the 3-dimensional cube [0,n]3 ca...
Publikováno v:
RUA. Repositorio Institucional de la Universidad de Alicante
Universidad de Alicante (UA)
Universidad de Alicante (UA)
We present a method to approximate, with controlled and arbitrarily small error, multiple intregrals over the unit cube $$[0,1]^{d}$$ by a single variable integral over [0, 1]. For this, we use the so called $$\delta $$ -uniform curves, which are a p
Autor:
Florian Pausinger, Markus Kiderlen
Publikováno v:
Kiderlen, M & Pausinger, F 2021, ' Discrepancy of stratified samples from partitions of the unit cube ', Monatshefte fur Mathematik, vol. 195, no. 2, pp. 267-306 . https://doi.org/10.1007/s00605-021-01538-4
Pausinger, F & Kiderlen, M 2021, ' Discrepancy of stratified samples from partitions of the unit cube ', Monatshefte fur Mathematik . https://doi.org/10.1007/s00605-021-01538-4
Pausinger, F & Kiderlen, M 2021, ' Discrepancy of stratified samples from partitions of the unit cube ', Monatshefte fur Mathematik . https://doi.org/10.1007/s00605-021-01538-4
We extend the notion of jittered sampling to arbitrary partitions and study the discrepancy of the related point sets. Let $\mathbf{\Omega}=(\Omega_1,\ldots,\Omega_N)$ be a partition of $[0,1]^d$ and let the $i$th point in $\mathcal{P}$ be chosen uni