Zobrazeno 1 - 10
of 99
pro vyhledávání: '"Umezu, Kenichiro"'
Autor:
Umezu, Kenichiro
For bifurcation analysis, we study the positive solution set for a semilinear elliptic equation of the logistic type, equipped with a sublinear boundary condition modeling coastal fishery harvesting. This work is a continuation of the author's previo
Externí odkaz:
http://arxiv.org/abs/2404.04574
Autor:
Umezu, Kenichiro
We study the positive solutions of the logistic elliptic equation with a nonlinear Neumann boundary condition that models coastal fishery harvesting ([18]). An essential role is played by the smallest eigenvalue of the Dirichlet eigenvalue problem, w
Externí odkaz:
http://arxiv.org/abs/2301.12147
Autor:
Umezu, Kenichiro
Publikováno v:
Nonlinear Analysis: Real World Applications 70 (2023) 103788
Let $0
Externí odkaz:
http://arxiv.org/abs/2202.09442
Autor:
Umezu, Kenichiro
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 June 2024 534(1)
Autor:
Umezu, Kenichiro
Publikováno v:
Journal of Differential Equations 350 (2023) 124-151
In this paper, we consider the Laplace equation with a class of indefinite superlinear boundary conditions and study the uniqueness of positive solutions that this problem possesses. Superlinear elliptic problems can be expected to have multiple posi
Externí odkaz:
http://arxiv.org/abs/2107.07719
We consider the problem $$ (P_\lambda)\quad -\Delta_{p}u=\lambda u^{p-1}+a(x)u^{q-1},\quad u\geq0\quad\mbox{ in }\Omega $$ under Dirichlet or Neumann boundary conditions. Here $\Omega$ is a smooth bounded domain of $\mathbb{R}^{N}$ ($N\geq1$), $\lamb
Externí odkaz:
http://arxiv.org/abs/2007.09498
Publikováno v:
Rend. Istit. Mat. Univ. Trieste 52 (2020) 217-241
We review the indefinite sublinear elliptic equation $-\Delta u=a(x)u^{q}$ in a smooth bounded domain $\Omega\subset\mathbb{R}^{N}$, with Dirichlet or Neumann homogeneous boundary conditions. Here $0
Externí odkaz:
http://arxiv.org/abs/2004.01284
We go further in the investigation of the Robin problem $(P_{\alpha})$: $-\Delta u=a(x)u^{q}$ in $\Omega$, $u\geq0$ in $\Omega$, $\partial_{\nu}u=\alpha u$ on $\partial \Omega$; on a bounded domain $\Omega\subset\mathbb{R}^{N}$, with $a$ sign-changin
Externí odkaz:
http://arxiv.org/abs/2001.09315
Let $\Omega\subset\mathbb{R}^{N}$ ($N\geq1$) be a smooth bounded domain, $a\in C(\bar{\Omega})$ a sign-changing function, and $0\leq q<1$. We investigate the Robin problem \[ \begin{cases} -\Delta u=a(x)u^{q} & \mbox{in $\Omega$},\\ u\geq0 & \mbox{in
Externí odkaz:
http://arxiv.org/abs/1901.04019