Zobrazeno 1 - 10
of 75
pro vyhledávání: '"Ulrich Bunke"'
Publikováno v:
𝐾-theory in Algebra, Analysis and Topology. :13-104
Publikováno v:
International Mathematics Research Notices
We construct an equivariant coarse homology theory arising from the algebraic $K$-theory of spherical group rings and use this theory to derive split injectivity results for associated assembly maps. On the way, we prove that the fundamental structur
Autor:
Ulrich Bunke, David Gepner
Publikováno v:
Memoirs of the American Mathematical Society. 269
Autor:
Ulrich Bunke
Publikováno v:
Journal of Noncommutative Geometry. 12:1293-1340
For a smooth manifold X of dimension
Comment: 49 pages (Proofs of the main theorems considerably simplified by using a better adapted version of differential connective K-theory)
Comment: 49 pages (Proofs of the main theorems considerably simplified by using a better adapted version of differential connective K-theory)
Autor:
Alexander Engel, Ulrich Bunke
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783030513344
The notion of a coarse homology theory was introduced in Definition 4.22. We first show that the condition of u-continuity can be enforced. This result may be helpful for the construction of coarse homology theories. We furthermore discuss some addit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::672f7483569bd1d2b161bee84691a3f7
https://doi.org/10.1007/978-3-030-51335-1_6
https://doi.org/10.1007/978-3-030-51335-1_6
Autor:
Ulrich Bunke, Alexander Engel
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783030513344
Lecture Notes in Mathematics
Lecture Notes in Mathematics
Introduction. - Part I Motivic Coarse Spaces and Spectra. - Bornological Coarse Spaces. - Motivic Coarse Spaces. - Motivic Coarse Spectra. - Merging Coarse and Uniform Structures. - Part II Coarse and Locally Finite Homology Theories. - Locally Finit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cd4dba6ab08ea1b159c82c00ed249559
https://doi.org/10.1007/978-3-030-51335-1
https://doi.org/10.1007/978-3-030-51335-1
Autor:
Ulrich Bunke, Alexander Engel
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783030513344
In this section we review locally finite homology theories in the context of TopBorn of topological spaces with an additional bornology. It gives a more systematic explanation of the appearance of the limit over bounded subsets in ( 6.9). We will see
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::037e092b14defb4b25392529b34c0991
https://doi.org/10.1007/978-3-030-51335-1_7
https://doi.org/10.1007/978-3-030-51335-1_7
Autor:
Alexander Engel, Ulrich Bunke
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783030513344
We will define the category \(\mathbf {Sp}{\mathcal {X}}\) of motivic coarse spectra as the stable version of the category of motivic coarse spaces.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::16fe6e53df6f9e289070412ac3fe0946
https://doi.org/10.1007/978-3-030-51335-1_4
https://doi.org/10.1007/978-3-030-51335-1_4
Autor:
Alexander Engel, Ulrich Bunke
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783030513344
This final section of the book is devoted to the construction and investigation of coarse K-homology. This coarse homology theory and its applications to index theory, geometric group theory and topology are one of the driving forces of development i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::12bf60d75f7165b50615fc5d9cbef243
https://doi.org/10.1007/978-3-030-51335-1_8
https://doi.org/10.1007/978-3-030-51335-1_8