Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Uliczka, Jan"'
Let $S$ be a multigraded polynomial ring such that the degree of each variable is a unit vector; so $S$ is the homogeneous coordinate ring of a product of projective spaces. In this setting, we characterize the formal Laurent series which arise as Hi
Externí odkaz:
http://arxiv.org/abs/1603.06215
Autor:
Uliczka, Jan
Die Arbeit basiert auf zwei Veröffentlichungen zur graduierten kommutativen Algebra: Thema des ersten Artikels ist die Übertragung eines klassischen Ergebnisses zur Höhe von Primidealen in Polynomringen auf allgemeine multigraduierte Ringe; einige
In this note, we give examples of formal power series satisfying certain conditions that cannot be realized as Hilbert series of finitely generated modules. This answers to the negative a question raised in a recent article by the second and the thir
Externí odkaz:
http://arxiv.org/abs/1402.2588
Let $\Gamma=\langle \alpha, \beta \rangle$ be a numerical semigroup. In this article we consider the dual $\Delta^*$ of a $\Gamma$-semimodule $\Delta$; in particular we deduce a formula that expresses the minimal set of generators of $\Delta^*$ in te
Externí odkaz:
http://arxiv.org/abs/1312.5627
Let M be a finitely generated ZZ-graded module over the standard graded polynomial ring R=K[X_1, ..., X_n] with K a field, and let H_M(t)=Q_M(t)/(1-t)^d be the Hilbert series of M. We introduce the Hilbert regularity of M as the lowest possible value
Externí odkaz:
http://arxiv.org/abs/1308.2917
Let \Gamma=<\alpha, \beta > be a numerical semigroup. In this article we consider several relations between the so-called \Gamma-semimodules and lattice paths from (0,\alpha) to (\beta,0): we investigate isomorphism classes of \Gamma-semimodules as w
Externí odkaz:
http://arxiv.org/abs/1209.4797
In this article we mainly consider the positively Z-graded polynomial ring R=F[X,Y] over an arbitrary field F and Hilbert series of finitely generated graded R-modules. The central result is an arithmetic criterion for such a series to be the Hilbert
Externí odkaz:
http://arxiv.org/abs/1109.4593
Publikováno v:
in: "Commutative Algebra and its Connections to Geometry (PASI 2009)," A. Corso, C. Polini (eds.), Contemporary Mathematics, vol. 555, Amer. Math. Soc., R.I., 2011, pp. 1-12
The Hilbert depth of a module M is the maximum depth that occurs among all modules with the same Hilbert function as M. In this note we compute the Hilbert depths of the powers of the irrelevant maximal ideal in a standard graded polynomial ring.
Externí odkaz:
http://arxiv.org/abs/1002.1400
Publikováno v:
J. Commut. Algebra 2 (2010), 327-357
Stanley decompositions of multigraded modules $M$ over polynomials rings have been discussed intensively in recent years. There is a natural notion of depth that goes with a Stanley decomposition, called the Stanley depth. Stanley conjectured that th
Externí odkaz:
http://arxiv.org/abs/0909.0686
Publikováno v:
Journal of Commutative Algebra, 2017 Jul 01. 9(2), 157-184.
Externí odkaz:
https://www.jstor.org/stable/26174802