Zobrazeno 1 - 10
of 1 036
pro vyhledávání: '"Uldall P"'
Autor:
Boesen MS, Cacic Hribljan M, Christensen SK, Klein-Petersen AW, El Mahdaoui S, Sagar MV, Schou E, Eltvedt AK, Børresen ML, Miranda MJ, Born AP, Uldall PV, Thygesen LC
Publikováno v:
Clinical Epidemiology, Vol Volume 14, Pp 501-509 (2022)
Magnus Spangsberg Boesen,1 Melita Cacic Hribljan,2 Søren Kirchhoff Christensen,1 Amalie Wandel Klein-Petersen,3 Sahla El Mahdaoui,4 Malini Vendela Sagar,5 Emilie Schou,5 Anna Korsgaard Eltvedt,6 Malene Landbo Børresen,3,7 Maria Jose Miranda,6 Alfre
Externí odkaz:
https://doaj.org/article/396a52b680a643a58ad52b9c316fe42b
In this paper, we study normal forms of analytic saddle-nodes in $\mathbb C^n$ with any Poincar\'e rank $k\in \mathbb N$. The approach and the results generalize those of Bonchaert and De Maesschalck from 2008 that considered $k=1$. In particular, we
Externí odkaz:
http://arxiv.org/abs/2410.20854
Autor:
Kristiansen, Kristian Uldall
In this paper, we show that the coefficients $\phi_n$ of the formal series expansions $y=\sum_{n=1}^\infty \phi_n x^n\in x\mathbb C[[x]]$ of center manifolds of planar analytic saddle-nodes grow like $\Gamma(n+a)$ (after rescaling $x$) as $n\rightarr
Externí odkaz:
http://arxiv.org/abs/2410.08088
We prove the existence of a family of travelling wave solutions in a variant of the $\textit{Zeldovich-Frank-Kamenetskii (ZFK) equation}$, a reaction-diffusion equation which models the propagation of planar laminar premixed flames in combustion theo
Externí odkaz:
http://arxiv.org/abs/2405.10076
Any attracting, hyperbolic and proper node of a two-dimensional analytic vector-field has a unique strong-stable manifold. This manifold is analytic. The corresponding weak-stable manifolds are, on the other hand, not unique, but in the nonresonant c
Externí odkaz:
http://arxiv.org/abs/2403.01488
In this paper, we revisit the damped Kepler problem within a general family of nonlinear damping forces with magnitude $\delta \vert u\vert^{\beta}\vert \dot u\vert^{\alpha+1}$, depending on three parameters $\delta>0,\alpha\ge 0$ and $\beta\ge 0$, a
Externí odkaz:
http://arxiv.org/abs/2312.07249
The goal of this paper is to study the number of sliding limit cycles of a regularized piecewise linear $VI_3$ two-fold using the notion of slow divergence integral. We focus on limit cycles produced by canard cycles located in the half-plane with an
Externí odkaz:
http://arxiv.org/abs/2310.07230
In this paper we define the notion of slow divergence integral along sliding segments in regularized planar piecewise smooth systems. The boundary of such segments may contain diverse tangency points. We show that the slow divergence integral is inva
Externí odkaz:
http://arxiv.org/abs/2310.06719
Autor:
Kristiansen, Kristian Uldall
In this paper, we revisit the Kepler problem with linear drag. With dissipation, the energy and the angular momentum are both decreasing, but in \cite{margheri2017a} it was shown that the eccentricity vector has a well-defined limit in the case of li
Externí odkaz:
http://arxiv.org/abs/2303.00283
Publikováno v:
360, Vol 9, Iss 9 (2024)
Research and development (R&D) is crucial for promoting knowledge generation as well as the acquisition of new knowledge, so as to enable the development of new products, processes, or services, and improve the existing ones. In this vein, countries
Externí odkaz:
https://doaj.org/article/03a837bc772046198ad3e3fbe2fbe8eb