Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Ubis, Adrián"'
We introduce an elementary argument to bound the $\textrm{BMO}$ seminorm of Fourier series with gaps giving in particular a sufficient condition for them to be in this space. Using finer techniques we carry out a detailed study of the series $\sum n^
Externí odkaz:
http://arxiv.org/abs/1812.08747
Autor:
Helfgott, Harald, Ubis, Adrián
Distinguir entre enteros con un n\'umero par o impar de divisores primos es una de las tareas m\'as dif\'iciles en la teor\'ia anal\'itica de n\'umeros. Un trabajo reciente de Matom\"aki y Radziwi{\l}{\l} muestra que, en promedio, ambos existen con l
Externí odkaz:
http://arxiv.org/abs/1812.08707
Bishop operators $T_{\alpha}$ acting on $L^2[0,1)$ were proposed by E. Bishop in the fifties as possible operators which might entail counterexamples for the Invariant Subspace Problem. We prove that all the Bishop operators are biquasitriangular and
Externí odkaz:
http://arxiv.org/abs/1812.08059
Autor:
Deshouillers, Jean-Marc, Ubis, Adrián
We estimate the maximal number of integral points which can be on a convex arc in the plane with given length, minimal radius of curvature and initial slope.
Comment: 23 pages. Submitted for publication
Comment: 23 pages. Submitted for publication
Externí odkaz:
http://arxiv.org/abs/1810.01154
Autor:
Ubis, Adrián
Publikováno v:
International Mathematics Research Notices 2016
Let $G=SL_2(\mathbb R)^d$ and $\Gamma=\Gamma_0^d$ with $\Gamma_0$ a lattice in $SL_2(\mathbb R)$. Let $S$ be any "curved" submanifold of small codimension of a maximal horospherical subgroup of $G$ relative to an $\mathbb R$-diagonalizable element $a
Externí odkaz:
http://arxiv.org/abs/1601.08020
Publikováno v:
In Advances in Mathematics 2 December 2020 375
Autor:
Seuret, Stéphane, Ubis, Adrián
We are interested in the convergence and the local regularity of the lacunary Fourier series $F_s(x) = \sum_{n=1}^{+\infty} \frac{e^{2i\pi n^2 x}}{n^s}$. In the 1850's, Riemann introduced the series $F_2$ as a possible example of nowhere differentiab
Externí odkaz:
http://arxiv.org/abs/1405.0810
Autor:
Chamizo, Fernando, Ubis, Adrián
Publikováno v:
Mathematics Magazine; Oct2024, Vol. 97 Issue 4, p406-408, 3p
Autor:
Chamizo, Fernando, Ubis, Adrián
We prove non-trivial upper and lower bounds for the "Spectrum of Singularities" of Fourier Series with polynomial frequencies. The Spectrum of Singularities of a function f gives the Hausdorff dimension of the set of points with a given H\"older expo
Externí odkaz:
http://arxiv.org/abs/1208.6533
Autor:
Chamizo, Fernando, Ubis, Adrián
Publikováno v:
In Advances in Mathematics 15 January 2014 250:1-34