Zobrazeno 1 - 10
of 327
pro vyhledávání: '"Tzvetkov N"'
Autor:
Angelova S, Jordanova M, Spassov B, Shivarov V, Simeonova M, Christov I, Angelova P, Alexandrova K, Stoimenov A, Nikolova V, Dimova I, Ganeva P, Tzvetkov N, Hadjiev E, Toshkov S
Publikováno v:
Balkan Journal of Medical Genetics, Vol 14, Iss 2, Pp 17-24 (2011)
Externí odkaz:
https://doaj.org/article/02b43ee369b64858b6105984eb777f35
Autor:
Tzvetkov, N., Visciglia, N.
Using an approach introduced by Hairer-Labb\' e we construct a unique global dynamics for the NLS on $\T^2$ with a white noise potential and an arbitrary polynomial nonlinearity. We build the solutions as a limit of classical solutions (up to a phase
Externí odkaz:
http://arxiv.org/abs/2204.03280
$H^1$ scattering for mass-subcritical NLS with short-range nonlinearity and initial data in $\Sigma$
We consider short-range mass-subcritical nonlinear Schr\"odinger equations and we show that the corresponding solutions with initial data in $\Sigma$ scatter in $H^1$. Hence we up-grade the classical scattering result proved by Yajima and Tsutsumifro
Externí odkaz:
http://arxiv.org/abs/2111.07802
We prove polynomial upper bounds on the growth of solutions to 2d cubic NLS where the Laplacian is confined by the harmonic potential. Due to better bilinear effects our bounds improve on those available for the $2d$ cubic NLS in the periodic setting
Externí odkaz:
http://arxiv.org/abs/2110.14912
We construct modified energies for the generalized KdV equation. As a consequence, we obtain quasi-invariance of the high order Gaussian measures along with $L^p$ regularity on the corresponding Radon-Nykodim density, as well as new bounds on the gro
Externí odkaz:
http://arxiv.org/abs/2107.01926
Publikováno v:
Zeitschrift für Kristallographie - New Crystal Structures, Vol 221, Iss 4, Pp 481-482 (2006)
Externí odkaz:
https://doaj.org/article/41446924397e4b4d9101c4a8d1ec1e03
Publikováno v:
Zeitschrift für Kristallographie - New Crystal Structures, Vol 221, Iss 4, Pp 479-480 (2006)
Externí odkaz:
https://doaj.org/article/e09acf8325c44f49b28e6d73a7ad9e37
Publikováno v:
Math. Ann. 378 (2020), no. 1-2, 389-423
We prove a new smoothing type property for solutions of the 1d quintic Schr\"odinger equation. As a consequence, we prove that a family of natural gaussian measures are quasi-invariant under the flow of this equation. In the defocusing case, we prove
Externí odkaz:
http://arxiv.org/abs/1810.00526
Autor:
Tzvetkov, N.1 (AUTHOR) nikolay.tzvetkov@cyu.fr, Visciglia, N.2 (AUTHOR)
Publikováno v:
Communications in Mathematical Physics. Aug2023, Vol. 401 Issue 3, p3109-3121. 13p.
We prove that the solution map associated with the $1D$ half-wave cubic equation in the periodic setting cannot be uniformly continuous on bounded sets of the periodic Sobolev spaces $H^s$ with $s\in (1/4, 1/2)$
Comment: to appear on Diff. Int.
Comment: to appear on Diff. Int.
Externí odkaz:
http://arxiv.org/abs/1508.03496