Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Tzung-Shin Yeh"'
Autor:
Jyun-Yuan Ciou, Tzung-Shin Yeh
Publikováno v:
Electronic Journal of Differential Equations, Vol 2021, Iss 10,, Pp 1-12 (2021)
We study exact multiplicity and bifurcation curves of positive solutions for the diffusive logistic problem with generalized Holling type-IV functional response $$\displaylines{ u''(x)+\lambda \big[ ru(1-\frac{u}{q})-\frac{u}{1+mu+u^2}\big] =0,\q
Externí odkaz:
https://doaj.org/article/0e44589b163043539a91b0b89f85a04c
Autor:
Tzung-Shin Yeh
Publikováno v:
Journal of Mathematical Analysis and Applications. 449:1708-1724
We study exact multiplicity and bifurcation curves of positive solutions for a multiparameter Dirichlet problem { u ″ ( x ) + λ [ a − b u + u p 1 + u p ] = 0 , − 1 x 1 , u ( − 1 ) = u ( 1 ) = 0 , where p > 1 , a , b are positive dimensionles
Autor:
Tzung-Shin Yeh
Publikováno v:
Communications on Pure and Applied Analysis. 16:645-670
We study exact multiplicity and bifurcation curves of positive solutions for a multiparameter diffusive logistic problem with Holling type-Ⅲ functional response \begin{document}${\left\{ {\begin{array}{*{20}{l}} {{u^{\prime \prime }}(x) + \lambda \
Publikováno v:
Communications on Pure and Applied Analysis. 15:1497-1514
We study exact multiplicity and bifurcation curves of positive solutions of the boundary value problem \begin{eqnarray} &u"(x)+\lambda (-u^4+\sigma u^3-\tau u^2+\rho u)=0, -1 < x < 1, \\ &u(-1)=u(1)=0, \end{eqnarray} where $\sigma, \tau \in \mathbb{R
Autor:
Tzung-Shin Yeh
Publikováno v:
Journal of Mathematical Analysis and Applications. 418:283-304
We study exact multiplicity and bifurcation diagrams of positive solutions for a multiparameter diffusive logistic problem with Holling type-IV functional response { u ″ ( x ) + λ f ( u ) = 0 , − 1 x 1 , u ( − 1 ) = u ( 1 ) = 0 , where the gro
Autor:
Shin-Hwa Wang, Tzung-Shin Yeh
Publikováno v:
Journal of Differential Equations. 255:812-839
We study exact multiplicity and bifurcation diagrams of positive solutions for a multiparameter spruce budworm population steady-state problem in one space dimension { u ″ ( x ) + λ ( r u ( 1 − u q ) − u 2 1 + u 2 ) = 0 , − 1 x 1 , u ( − 1
Publikováno v:
Communications on Pure and Applied Analysis. 12:2297-2318
We study the bifurcation diagrams of positive solutions of the $p$-Laplacian Dirichlet problem \begin{eqnarray*} (\varphi_p(u'(x)))'+f_\lambda(u(x))=0, -1 < x < 1, \\ u(-1)=u(1)=0, \end{eqnarray*} where $\varphi_p(y)=|y|^{p-2}y$, $(\varphi_p(u'))'$ i
Autor:
Tzung-Shin Yeh, Shin-Hwa Wang
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 71:126-140
We study the bifurcation curves of positive solutions of the boundary value problem { u ″ ( x ) + f e ( u ( x ) ) = 0 , − 1 x 1 , u ( − 1 ) = u ( 1 ) = 0 , where f e ( u ) = g ( u ) − e h ( u ) , e ∈ R is a bifurcation parameter, and functi
Autor:
Tzung Shin Yeh, Shin-Hwa Wang
Publikováno v:
Journal of Mathematical Analysis and Applications. 342(2):1175-1191
We study exact multiplicity of positive solutions and the bifurcation curve of the p-Laplacian perturbed Gelfand problem from combustion theory { ( φ p ( u ′ ( x ) ) ) ′ + λ exp ( a u a + u ) = 0 , − 1 x 1 , u ( − 1 ) = u ( 1 ) = 0 , where
Autor:
Tzung-Shin Yeh, Shin-Hwa Wang
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 64:2412-2432
We study the bifurcation diagrams of positive solutions of the p-Laplacian Dirichlet problem {(ϕp(u'(x)))' + fλ(u(x)) = 0, -1 1, ϕp(y) = |y|p-2y, (ϕp (u'))' is the one-dimensional p-Laplacian, and λ > 0 is a bifurcation parameter. We assume that