Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Tzu-Hsin Karen Chen"'
Autor:
Tzu-Hsin Karen Chen, Karen C. Seto
Publikováno v:
Journal of Land Use Science, Vol 17, Iss 1, Pp 245-261 (2022)
ABSTRACTWhat are patterns of gender and authorship in urban land science? Our bibliometric analysis shows that the proportion of women shrinks among highly productive, impactful, and senior authors, akin to a pyramid shape. First, women are only one
Externí odkaz:
https://doaj.org/article/c5c2f9180cbb45afbdc05794c40a27ec
Autor:
Karl Samuelsson, Tzu-Hsin Karen Chen, Sussie Antonsen, S Anders Brandt, Clive Sabel, Stephan Barthel
Publikováno v:
Environmental Research Letters, Vol 16, Iss 1, p 014022 (2020)
Despite much attention in the literature, knowledge about the dynamics surrounding urban densification and urban greening is still in dire need for architects, urban planners and scientists that strive to design, develop, and regenerate sustainable a
Externí odkaz:
https://doaj.org/article/7f824822441e41f5a8e0ce7b449be23b
Autor:
Tzu-Hsin Karen Chen, Henriette Thisted Horsdal, Karl Samuelsson, Ane Marie Closter, Megan Davies, Stephan Barthel, Carsten Bøcker Pedersen, Alexander V. Prishchepov, Clive E. Sabel
Publikováno v:
Chen, T-H K, Horsdal, H T, Samuelsson, K, Closter, A M, Davies, M, Barthel, S, Pedersen, C B, Prishchepov, A V & Sabel, C E 2023, ' Higher depression risks in medium-than in high-density urban form across Denmark ', Science Advances . https://doi.org/10.1126/sciadv.adf3760
Chen, T-H K, Horsdal, H T, Samuelsson, K, Closter, A M, Davies, M, Barthel, S, Pedersen, C B, Prishchepov, A V & Sabel, C E 2023, ' Higher depression risks in medium-than in high-density urban form across Denmark ', Science Advances, vol. 9, no. 21, eadf3760 . https://doi.org/10.1126/sciadv.adf3760
Chen, T-H K, Horsdal, H T, Samuelsson, K, Closter, A M, Davies, M, Barthel, S, Pedersen, C B, Prishchepov, A V & Sabel, C E 2023, ' Higher depression risks in medium-than in high-density urban form across Denmark ', Science Advances, vol. 9, no. 21, eadf3760 . https://doi.org/10.1126/sciadv.adf3760
Urban areas are associated with higher depression risks than rural areas. However, less is known about how different types of urban environments relate to depression risk. Here, we use satellite imagery and machine learning to quantify three-dimensio
Publikováno v:
Earth Data Analytics for Planetary Health ISBN: 9789811987649
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::471255744e94691874ccb50faf89d4f4
https://doi.org/10.1007/978-981-19-8765-6_10
https://doi.org/10.1007/978-981-19-8765-6_10
Publikováno v:
Remote Sensing of Environment. 294:113625
Publikováno v:
Urban Remote Sensing
Publikováno v:
Oehmcke, S, Chen, T H K, Prishchepov, A V & Gieseke, F 2020, Creating cloud-free satellite imagery from image time series with deep learning . in V Chandola, R R Vatsavai & A Shashidharan (eds), Proceedings of the 9th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BIGSPATIAL 2020 ., 3429345, Association for Computing Machinery, Proceedings of the 9th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BIGSPATIAL 2020, 9th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BIGSPATIAL 2020, Seattle, Virtual, United States, 03/11/2020 . https://doi.org/10.1145/3423336.3429345
BigSpatial@SIGSPATIAL
Oehmcke, S, Chen, T H K, Prishchepov, A V & Gieseke, F 2020, Creating cloud-free satellite imagery from image time series with deep learning . in V Chandola, R R Vatsavai & A Shashidharan (eds), Proceedings of the 9th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BIGSPATIAL 2020 ., 3, Association for Computing Machinery, 9th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data-BIGSPATIAL 2020, San Diego / Virtuel, United States, 03/11/2020 . https://doi.org/10.1145/3423336.3429345
BigSpatial@SIGSPATIAL
Oehmcke, S, Chen, T H K, Prishchepov, A V & Gieseke, F 2020, Creating cloud-free satellite imagery from image time series with deep learning . in V Chandola, R R Vatsavai & A Shashidharan (eds), Proceedings of the 9th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BIGSPATIAL 2020 ., 3, Association for Computing Machinery, 9th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data-BIGSPATIAL 2020, San Diego / Virtuel, United States, 03/11/2020 . https://doi.org/10.1145/3423336.3429345
Optical satellite images are important for environmental monitoring. Unfortunately, such images are often affected by distortions, such as clouds, shadows, or missing data. This work proposes a deep learning approach for cleaning and imputing satelli
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::10bb3b60b91f4950f54b772fc82ef133
https://pure.au.dk/portal/da/publications/creating-cloudfree-satellite-imagery-from-image-time-series-with-deep-learning(d8b4f813-7410-4fb1-8d80-55b00102c591).html
https://pure.au.dk/portal/da/publications/creating-cloudfree-satellite-imagery-from-image-time-series-with-deep-learning(d8b4f813-7410-4fb1-8d80-55b00102c591).html
Publikováno v:
Chen, T-H K, Prishchepov, A, Fensholt, R & Sabel, C E 2019, ' Detecting and monitoring long-term landslides in urbanized areas with nighttime light data and multi-seasonal Landsat imagery across Taiwan from 1998 to 2017 ', Remote Sensing of Environment, vol. 225, pp. 317-327 . https://doi.org/10.1016/j.rse.2019.03.013
Monitoring long-term landslide activity is of importance for risk assessment and land management. Daytime airborne drones or very high-resolution optical satellites are often used to create landslide maps. However, such imagery comes at a high cost,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::305780d1f153b0830e4dd3dfcdaaf802
http://arxiv.org/abs/2009.07954
http://arxiv.org/abs/2009.07954
Autor:
Clive E. Sabel, Chunping Qiu, Michael Schmitt, Tzu-Hsin Karen Chen, Alexander V. Prishchepov, Xiao Xiang Zhu
Publikováno v:
Chen, T-H K, Qiu, C, Schmitt, M, Zhu, X, Sabel, C E & Prishchepov, A 2020, ' Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: A semantic segmentation solution ', Remote Sensing of Environment, vol. 251, 112096 . https://doi.org/10.1016/j.rse.2020.112096
Chen, T H K, Qiu, C, Schmitt, M, Zhu, X X, Sabel, C E & Prishchepov, A V 2020, ' Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018 : A semantic segmentation solution ', Remote Sensing of Environment, vol. 251, 112096 . https://doi.org/10.1016/j.rse.2020.112096
Chen, T H K, Qiu, C, Schmitt, M, Zhu, X X, Sabel, C E & Prishchepov, A V 2020, ' Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018 : A semantic segmentation solution ', Remote Sensing of Environment, vol. 251, 112096 . https://doi.org/10.1016/j.rse.2020.112096
Landsat imagery is an unparalleled freely available data source that allows reconstructing horizontal and vertical urban form. This paper addresses the challenge of using Landsat data, particularly its 30m spatial resolution, for monitoring three-dim
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dcff25d6af4834b3caa1f16ba820c35c
https://pure.au.dk/portal/da/publications/mapping-horizontal-and-vertical-urban-densification-in-denmark-with-landsat-timeseries-from-1985-to-2018-a-semantic-segmentation-solution(a89efd0d-13b0-4b0d-a38a-fac9d844bcbb).html
https://pure.au.dk/portal/da/publications/mapping-horizontal-and-vertical-urban-densification-in-denmark-with-landsat-timeseries-from-1985-to-2018-a-semantic-segmentation-solution(a89efd0d-13b0-4b0d-a38a-fac9d844bcbb).html
Autor:
Tzu-Hsin Karen Chen, Jack Rusk, Karen C. Seto, Amina Maharjan, Sara Shneiderman, Prakash C. Tiwari, Mark Turin
Publikováno v:
Science of the Total Environment
Science of the Total Environment, Elsevier, 2022, 804, pp.150039. ⟨10.1016/j.scitotenv.2021.150039⟩
Science of the Total Environment, Elsevier, 2022, 804, pp.150039. ⟨10.1016/j.scitotenv.2021.150039⟩
International audience; Mountainous regions are highly hazardous, and these hazards often lead to loss of human life. The Hindu Kush Himalaya (HKH), like many mountainous regions, is the site of multiple and overlapping natural hazards, but the distr