Zobrazeno 1 - 10
of 897
pro vyhledávání: '"Twists of curves"'
Publikováno v:
AIMS Mathematics, Vol 7, Iss 1, Pp 306-314 (2022)
The crucial step in elliptic curve scalar multiplication based on scalar decompositions using efficient endomorphisms—such as GLV, GLS or GLV+GLS—is to produce a short basis of a lattice involving the eigenvalues of the endomorphisms, which usual
Publikováno v:
Transactions of the American Mathematical Society. 375:351-368
The Mordell-Weil groups $E(\mathbb{Q})$ of elliptic curves influence the structures of their quadratic twists $E_{-D}(\mathbb{Q})$ and the ideal class groups $\mathrm{CL}(-D)$ of imaginary quadratic fields. For appropriate $(u,v) \in \mathbb{Z}^2$, w
Publikováno v:
Annales de l'Institut Fourier. 71:53-87
The study of $n$-Selmer group of elliptic curve over number field in recent past has led to the discovery of some deep results in the arithmetic of elliptic curves. Given two elliptic curves $E_1$ and $E_2$ over a number field $K$, Mazur-Rubin\cite{m
Autor:
Lian Duan
Publikováno v:
Mathematics of Computation. 90:931-951
We prove that a selfdual $GL_3$-Galois representation constructed by van Geemen and Top is isomorphic to a quadratic twist of the symmetric square of the Tate module of an elliptic curve. This is an application of our refinement of the Faltings-Serre
Autor:
Joan-Carles Lario, Gabriel Cardona
Publikováno v:
Journal of Number Theory. 209:195-211
Here we study the twists of the genus 2 curve given by the hyperelliptic equation Y 2 = X 6 + 1 over any field of characteristic different from 2, 3 or 5. Since any curve of genus 2 with group of automorphisms of order 24 is isomorphic (over an algeb
Autor:
Cardona, Gabriel, Quer, Jordi
Publikováno v:
Transactions of the American Mathematical Society, 2007 Jun 01. 359(6), 2831-2849.
Externí odkaz:
http://dx.doi.org/10.1090/S0002-9947-07-04111-6
Autor:
Manuel Fernandez-Guasti
Publikováno v:
Axioms
Volume 10
Issue 4
Axioms, Vol 10, Iss 250, p 250 (2021)
Volume 10
Issue 4
Axioms, Vol 10, Iss 250, p 250 (2021)
Elliptic scator algebra is possible in 1+n dimensions, n∈N. It is isomorphic to complex algebra in 1 + 1 dimensions, when the real part and any one hypercomplex component are considered. It is endowed with two representations: an additive one, wher
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b4ad9596bc97b5eb8a0bdbaf7de9c86
https://doi.org/10.20944/preprints202108.0572.v1
https://doi.org/10.20944/preprints202108.0572.v1
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Craig Costello
Publikováno v:
Advances in Cryptology – ASIACRYPT 2020 ISBN: 9783030648336
ASIACRYPT (2)
ASIACRYPT (2)
This paper explores a new way of instantiating isogeny-based cryptography in which parties can work in both the \((p+1)\)-torsion of a set of supersingular curves and in the \((p-1)\)-torsion corresponding to the set of their quadratic twists. Althou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::adbffc1fc0d1cfa0b8307769b6c06765
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-64834-3_15
Autor:
Liangyi Zhao, Igor E. Shparlinski
Publikováno v:
Journal of Number Theory. 191:194-212
We show that the distribution of elliptic curves in isogeny classes of curves with a given value of the Frobenius trace t becomes close to uniform even when t is averaged over very short intervals inside the Hasse–Weil interval. This result is base