Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Tuzun, Robert E."'
Autor:
Tuzun, Robert E., Sikora, Adam S.
Extending upon our previous work, we verify the Jones Unknot Conjecture for all knots up to $24$ crossings. We describe the method of our approach and analyze the growth of the computational complexity of its different components.
Comment: 7 pag
Comment: 7 pag
Externí odkaz:
http://arxiv.org/abs/2003.06724
Autor:
Tuzun, Robert E., Sikora, Adam S.
The Jones unknot conjecture states that the Jones polynomial distinguishes the unknot from nontrivial knots. We prove it for knots up to 23 crossings.
Comment: 2 pages
Comment: 2 pages
Externí odkaz:
http://arxiv.org/abs/1809.02285
Autor:
Tuzun, Robert E., Sikora, Adam S.
We proved by computer enumeration that the Jones polynomial distinguishes the unknot for knots up to 22 crossings. Following an approach of Yamada, we generated knot diagrams by inserting algebraic tangles into Conway polyhedra, computed their Jones
Externí odkaz:
http://arxiv.org/abs/1606.06671
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Polymer 2003 44(13):3761-3767
Publikováno v:
Journal of Chemical Physics; 10/1/1996, Vol. 105 Issue 13, p5494, 9p
Publikováno v:
Journal of Chemical Physics; 5/15/1991, Vol. 94 Issue 10, p6491, 9p
Autor:
Chao Yang, Raghavan, Padma, Arrowood, Lloyd, Noid, Donald W., Sumpter, Bobby G., Tuzun, Robert E.
Publikováno v:
International Journal of High Performance Computing Applications; Nov2002, Vol. 16 Issue 4, p409, 16p, 5 Black and White Photographs, 2 Diagrams, 6 Charts, 2 Graphs
Publikováno v:
Macromolecular Theory & Simulations; Sep2002, Vol. 11 Issue 7, p711-728, 18p
Publikováno v:
Macromolecular Theory & Simulations; Oct2001, Vol. 10 Issue 8, p756-761, 6p