Zobrazeno 1 - 10
of 699
pro vyhledávání: '"Tuza Zsolt"'
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 42, Iss 4, Pp 1061-1074 (2022)
A subgraph G of H is singular if the vertices of G either have the same degree in H or have pairwise distinct degrees in H. The largest number of edges of a graph on n vertices that does not contain a singular copy of G is denoted by TS(n, G). Caro a
Externí odkaz:
https://doaj.org/article/8e44b12e9869402882a2328dce50e8b9
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 41, Iss 4, Pp 1021-1040 (2021)
Hovey introduced A-cordial labelings as a generalization of cordial and harmonious labelings [7]. If A is an Abelian group, then a labeling f : V (G) → A of the vertices of some graph G induces an edge labeling on G; the edge uv receives the label
Externí odkaz:
https://doaj.org/article/4612c9bbd67143738842c752e7ec4989
Autor:
Barát, János, Cambie, Stijn, Hahn, Geňa, Mattiolo, Davide, Onderko, Alfréd, Schiermeyer, Ingo, Tuza, Zsolt
Since its beginnings, every Cycles and Colourings workshop holds one or two open problem sessions; this document contains the problems (together with notes regarding the current state of the art and related bibliography) presented by participants of
Externí odkaz:
http://arxiv.org/abs/2411.10046
A strong odd coloring of a simple graph $G$ is a proper coloring of the vertices of $G$ such that for every vertex $v$ and every color $c$, either $c$ is used an odd number of times in the open neighborhood $N_G(v)$ or no neighbor of $v$ is colored b
Externí odkaz:
http://arxiv.org/abs/2410.02336
Autor:
Brešar Boštjan, Bujtás Csilla, Gologranc Tanja, Klavžar Sandi, Košmrlj Gašper, Marc Tilen, Patkós Balázs, Tuza Zsolt, vizer Máté
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 41, Iss 1, Pp 225-247 (2021)
A longest sequence (v1, . . ., vk) of vertices of a graph G is a Grundy total dominating sequence of G if for all i, N(υj)\∪j=1i-1N(υj)≠∅N({\upsilon _j})\backslash \bigcup\nolimits_{j = 1}^{i - 1} {N({\upsilon _j})} \ne \emptyset . The length
Externí odkaz:
https://doaj.org/article/7354b0e5988e4cd6b60942146d69c9ca
A graph $G$ of constant link $L$ is a graph in which the neighborhood of any vertex induces a graph isomorphic to $L$. Given two different graphs, $H$ and $G$, the induced Tur\'an number ${\rm ex}(n; H, G{\rm -ind})$ is defined as the maximum number
Externí odkaz:
http://arxiv.org/abs/2409.12875
The balance game is played on a graph $G$ by two players, Admirable (A) and Impish (I), who take turns selecting unlabeled vertices of $G$. Admirable labels the selected vertices by $0$ and Impish by $1$, and the resulting label on any edge is the su
Externí odkaz:
http://arxiv.org/abs/2409.01796
Autor:
Caro, Yair, Tuza, Zsolt
Publikováno v:
Mathematics 2024, 12(23), 3665
We consider extremal edge-coloring problems inspired by the theory of anti-Ramsey / rainbow coloring, and further by odd-colorings and conflict-free colorings. Let $G$ be a graph, and $F$ any given family of graphs. For every integer $n \geq |G|$, le
Externí odkaz:
http://arxiv.org/abs/2408.04257
Autor:
Caro, Yair, Tuza, Zsolt
Publikováno v:
Discrete Applied Mathematics, 363 (2025), 190-200
We consider coloring problems inspired by the theory of anti-Ramsey / rainbow colorings that we generalize to a far extent. Let $\mathcal{F}$ be a hereditary family of graphs; i.e., if $H\in \mathcal{F}$ and $H'\subset H$ then also $H'\subset \mathca
Externí odkaz:
http://arxiv.org/abs/2405.19812
In this paper, we address problems related to parameters concerning edge mappings of graphs. Inspired by Ramsey's Theorem, the quantity $m(G, H)$ is defined to be the minimum number $n$ such that for every $f: E(K_n) \rightarrow E(K_n)$ either there
Externí odkaz:
http://arxiv.org/abs/2402.01004