Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Tuxanidy, Aleksandr"'
Autor:
Tuxanidy, Aleksandr, Panario, Daniel
It is proven that, in any given base, there are infinitely many palindromic numbers having at most six prime divisors, each relatively large. The work involves equidistribution estimates for the palindromes in residue classes to large moduli, offerin
Externí odkaz:
http://arxiv.org/abs/2307.16637
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tuxanidy, Aleksandr, Wang, Qiang
Let $q$ be a power of a prime, let $\mathbb{F}_q$ be the finite field with $q$ elements and let $n \geq 2$. For a polynomial $h(x) \in \mathbb{F}_q[x]$ of degree $n \in \mathbb{N}$ and a subset $W \subseteq [0,n] := \{0, 1, \ldots, n\}$, we define th
Externí odkaz:
http://arxiv.org/abs/1605.00351
Autor:
Tuxanidy, Aleksandr, Wang, Qiang
We give a new proof of the Hansen-Mullen irreducibility conjecture. The proof relies on an application of a (seemingly new) sufficient condition for the existence of elements of degree $n$ in the support of functions on finite fields. This connection
Externí odkaz:
http://arxiv.org/abs/1604.04023
Autor:
Tuxanidy, Aleksandr, Wang, Qiang
In this paper we derive a formula for the number of $N$-free elements over a finite field $\mathbb{F}_q$ with prescribed trace, in particular trace zero, in terms of Gaussian periods. As a consequence, we derive a simple explicit formula for the numb
Externí odkaz:
http://arxiv.org/abs/1409.6961
Autor:
Tuxanidy, Aleksandr, Wang, Qiang
We study compositional inverses of permutation polynomials, complete mappings, mutually orthogonal Latin squares, and bent vectorial functions. Recently it was obtained in [33] the compositional inverses of linearized permutation binomials over finit
Externí odkaz:
http://arxiv.org/abs/1409.6540
Autor:
Tuxanidy, Aleksandr, Wang, Qiang
We study the compositional inverses of some general classes of permutation polynomials over finite fields. We show that we can write these inverses in terms of the inverses of two other polynomials bijecting subspaces of the finite field, where one o
Externí odkaz:
http://arxiv.org/abs/1310.8369
Autor:
Tuxanidy, Aleksandr, Wang, Qiang
Let $q = p^s$ be a power of a prime number $p$ and let $\mathbb{F}_q$ be the finite field with $q$ elements. In this paper we obtain the explicit factorization of the cyclotomic polynomial $\Phi_{2^nr}$ over $\mathbb{F}_q$ where both $r \geq 3$ and $
Externí odkaz:
http://arxiv.org/abs/1109.4693
Autor:
Tuxanidy, Aleksandr, Wang, Qiang
Publikováno v:
In Discrete Applied Mathematics 30 January 2017 217 Part 2:318-329
Autor:
Tuxanidy, Aleksandr, Wang, Qiang
Publikováno v:
In Journal of Number Theory March 2016 160:536-565