Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Tushar Nagarajan"'
Publikováno v:
Data, Vol 4, Iss 1, p 27 (2019)
Antimicrobial peptides are ubiquitous molecules that form the innate immune system of organisms across all kingdoms of life. Despite their prevalence and early origins, they continue to remain potent natural antimicrobial agents. Antimicrobial peptid
Externí odkaz:
https://doaj.org/article/7809279777ce4c53bb76569a05759ba2
Publikováno v:
CVPR
We introduce an approach for pre-training egocentric video models using large-scale third-person video datasets. Learning from purely egocentric data is limited by low dataset scale and diversity, while using purely exocentric (third-person) data int
Autor:
Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel Martin, Tushar Nagarajan, Ilija Radosavovic, Santhosh Kumar Ramakrishnan, Fiona Ryan, Jayant Sharma, Michael Wray, Mengmeng Xu, Eric Zhongcong Xu, Chen Zhao, Siddhant Bansal, Dhruv Batra, Vincent Cartillier, Sean Crane, Tien Do, Morrie Doulaty, Akshay Erapalli, Christoph Feichtenhofer, Adriano Fragomeni, Qichen Fu, Abrham Gebreselasie, Cristina Gonzalez, James Hillis, Xuhua Huang, Yifei Huang, Wenqi Jia, Weslie Khoo, Jachym Kolar, Satwik Kottur, Anurag Kumar, Federico Landini, Chao Li, Yanghao Li, Zhenqiang Li, Karttikeya Mangalam, Raghava Modhugu, Jonathan Munro, Tullie Murrell, Takumi Nishiyasu, Will Price, Paola Ruiz Puentes, Merey Ramazanova, Leda Sari, Kiran Somasundaram, Audrey Southerland, Yusuke Sugano, Ruijie Tao, Minh Vo, Yuchen Wang, Xindi Wu, Takuma Yagi, Ziwei Zhao, Yunyi Zhu, Pablo Arbelaez, David Crandall, Dima Damen, Giovanni Maria Farinella, Christian Fuegen, Bernard Ghanem, Vamsi Krishna Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Kitani, Haizhou Li, Richard Newcombe, Aude Oliva, Hyun Soo Park, James M. Rehg, Yoichi Sato, Jianbo Shi, Mike Zheng Shou, Antonio Torralba, Lorenzo Torresani, Mingfei Yan, Jitendra Malik
We introduce Ego4D, a massive-scale egocentric video dataset and benchmark suite. It offers 3,670 hours of daily-life activity video spanning hundreds of scenarios (household, outdoor, workplace, leisure, etc.) captured by 931 unique camera wearers f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1501461e84d5acdefffd137ee9ba374d
Publikováno v:
CVPR
First-person video naturally brings the use of a physical environment to the forefront, since it shows the camera wearer interacting fluidly in a space based on his intentions. However, current methods largely separate the observed actions from the p
Publikováno v:
ICCV
Learning how to interact with objects is an important step towards embodied visual intelligence, but existing techniques suffer from heavy supervision or sensing requirements. We propose an approach to learn human-object interaction "hotspots" direct
Publikováno v:
Data, Vol 4, Iss 1, p 27 (2019)
Antimicrobial peptides are ubiquitous molecules that form the innate immune system of organisms across all kingdoms of life. Despite their prevalence and early origins, they continue to remain potent natural antimicrobial agents. Antimicrobial peptid
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e378443f01e346e6272644794b1658a8
https://doi.org/10.1101/463588
https://doi.org/10.1101/463588
Autor:
Dipshikha Chakravortty, Natasha Roy, Madhulika Mishra, Sathyabaarathi Ravichandran, Tushar Nagarajan, Omkar Kulkarni, Nagasuma Chandra, Deepesh Nagarajan
Publikováno v:
IndraStra Global.
There is a pressing need for new therapeutics to combat multidrug- and carbapenem-resistant bacterial pathogens. This challenge prompted us to use a long short-term memory (LSTM) language model to understand the underlying grammar, i.e. the arrangeme
Autor:
Tushar Nagarajan, Kristen Grauman
Publikováno v:
Computer Vision – ECCV 2018 ISBN: 9783030012458
ECCV (1)
ECCV (1)
We present a new approach to modeling visual attributes. Prior work casts attributes in a similar role as objects, learning a latent representation where properties (e.g., sliced) are recognized by classifiers much in the way objects (e.g., apple) ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f8ffc81ce2dd884b4c6ab59726105974
https://doi.org/10.1007/978-3-030-01246-5_11
https://doi.org/10.1007/978-3-030-01246-5_11
Autor:
Larry S. Davis, Kristen Grauman, Rogerio Feris, Tushar Nagarajan, Zuxuan Wu, Abhishek Kumar, Steven J. Rennie
Publikováno v:
CVPR
Very deep convolutional neural networks offer excellent recognition results, yet their computational expense limits their impact for many real-world applications. We introduce BlockDrop, an approach that learns to dynamically choose which layers of a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c2f933ae1c010bf0b5a7192368986850
http://arxiv.org/abs/1711.08393
http://arxiv.org/abs/1711.08393