Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Turek, Sławomir"'
We show that an embedding of a fixed 0-dimensional compact space $K$ into the \v{C}ech--Stone remainder $\omega^*$ as a nowhere dense P-set is the unique generic limit, a special object in the category consisting of all continuous maps from $K$ to co
Externí odkaz:
http://arxiv.org/abs/2310.05043
Publikováno v:
Topology Appl. 304 (2021), 107782
The $Golomb$ $space$ (resp. the $Kirch$ $space$) is the set $\mathbb N$ of positive integers endowed with the topology generated by the base consisting of arithmetic progressions $a+b\mathbb N_0=\{a+bn:n\ge 0\}$ where $a\in\mathbb N$ and $b$ is a (sq
Externí odkaz:
http://arxiv.org/abs/2006.12357
Publikováno v:
Comment. Math. Univ. Carolin. 62:3 (2021) 347-360
The $Golomb$ $space$ $\mathbb N_\tau$ is the set $\mathbb N$ of positive integers endowed with the topology $\tau$ generated by the base consisting of arithmetic progressions $\{a+bn:n\ge 0\}$ with coprime $a,b$. We prove that the Golomb space $\math
Externí odkaz:
http://arxiv.org/abs/1912.01994
Publikováno v:
Topology Appl. 267 (2019) 106868
According to a folklore characterization of supercompact spaces, a compact Hausdorff space is supercompact if and only if it has a binary closed $k$-network. This characterization suggests to call a topological space $super$ if it has a binary closed
Externí odkaz:
http://arxiv.org/abs/1906.03549
Publikováno v:
Comment. Math. Univ. Carolin. 59:4 (2018) 423-442
The Golomb space $\mathbb N_\tau$ is the set $\mathbb N$ of positive integers endowed with the topology $\tau$ generated by the base consisting of arithmetic progressions $\{a+bn\}_{n=0}^\infty$ with coprime $a,b$. We prove that the Golomb space $\ma
Externí odkaz:
http://arxiv.org/abs/1711.06749
Publikováno v:
In Topology and its Applications 1 December 2021 304
Autor:
Kucharski, Andrzej, Turek, Sławomir
We introduce a new class of $\varkappa$-metrizable spaces, namely countably $\varkappa$-metrizable spaces. We show that the class of all $\varkappa$-metrizable spaces is a proper subclass of counably $\varkappa$-metrizable spaces. On the other hand,
Externí odkaz:
http://arxiv.org/abs/1612.08838
Publikováno v:
Rev. R. Acad. Cienc. Exactas F\'is. Nat. Ser. A Math. RACSAM 108 (2014), no. 2, 989--1004
We study an analogue of the Parovicenko property in categories of compact spaces with additional structures. In particular, we present an internal characterization of this property in the class of compact median spaces.
Comment: Minor revision,
Comment: Minor revision,
Externí odkaz:
http://arxiv.org/abs/1306.0848
Publikováno v:
Topology Appl. 161 (2014) 263-278
A topological space $X$ is called hereditarily supercompact if each closed subspace of X is supercompact. By a combined result of Bula, Nikiel, Tuncali, Tymchatyn, and Rudin, each monotonically normal compact Hausdorff space is hereditarily supercomp
Externí odkaz:
http://arxiv.org/abs/1301.5297
Autor:
Kucharski, Andrzej, Turek, Sławomir
Publikováno v:
In Topology and its Applications 1 December 2019 268