Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Turdakov, Denis"'
The vulnerability of artificial neural networks to adversarial perturbations in the black-box setting is widely studied in the literature. The majority of attack methods to construct these perturbations suffer from an impractically large number of qu
Externí odkaz:
http://arxiv.org/abs/2410.15889
Publikováno v:
ACM Computing Surveys 52 6 131 (2009) 1-36
Random graph (RG) models play a central role in the complex networks analysis. They help to understand, control, and predict phenomena occurring, for instance, in social networks, biological networks, the Internet, etc. Despite a large number of RG m
Externí odkaz:
http://arxiv.org/abs/2403.14415
Autor:
Drobyshevskiy, Mikhail, Aivazov, Denis, Turdakov, Denis, Yatskov, Alexander, Varlamov, Maksim, Shayhelislamov, Danil
Publikováno v:
2019 Ivannikov Ispras Open Conference (ISPRAS)
Online network crawling tasks require a lot of efforts for the researchers to collect the data. One of them is identification of important nodes, which has many applications starting from viral marketing to the prevention of disease spread. Various c
Externí odkaz:
http://arxiv.org/abs/2403.14351
Publikováno v:
2022 Ivannikov Ispras Open Conference (ISPRAS), 2022, pp. 31-36
Social networks crawling is in the focus of active research the last years. One of the challenging task is to collect target nodes in an initially unknown graph given a budget of crawling steps. Predicting a node property based on its partially known
Externí odkaz:
http://arxiv.org/abs/2403.13865
Autor:
Panfilova, Anastasia S.1 (AUTHOR) panfilova87@gmail.com, Turdakov, Denis Yu.2 (AUTHOR)
Publikováno v:
Scientific Reports. 3/4/2024, Vol. 14 Issue 1, p1-18. 18p.
Publikováno v:
Proceedings of the VLDB Endowment; 20240101, Issue: Preprints p422-433, 12p
Autor:
DROBYSHEVSKIY, MIKHAIL1 drobyshevsky@ispras.ru, TURDAKOV, DENIS1 turdakov@ispras.ru
Publikováno v:
ACM Computing Surveys. Nov2020, Vol. 52 Issue 6, p1-36. 36p. 1 Illustration.
Publikováno v:
Труды Института системного программирования РАН, Vol 21, Iss 0 (2018)
While many researchers attempt to build up different kinds of ontologies by means of Wikipedia, the possibility of deriving high-quality domain specific subset of Wikipedia using its own category structure still remains undervalued. We prove the nece
Autor:
Chykhradze, Kyrylo, Korshunov, Anton, Buzun, Nazar, Pastukhov, Roman, Kuzyurin, Nikolay, Turdakov, Denis, Kim, Hangkyu
Publikováno v:
Complex Networks V; 2014, p199-208, 10p
Autor:
Buzun, Nazar, Korshunov, Anton, Avanesov, Valeriy, Filonenko, Ilya, Kozlov, Ilya, Turdakov, Denis, Kim, Hangkyu
Publikováno v:
2014 IEEE International Conference on Data Mining Workshop; 2014, p533-540, 8p