Zobrazeno 1 - 10
of 13 822
pro vyhledávání: '"Turaev A"'
Autor:
Chen, Qingtao, Zhu, Shengmao
This is the third article in a series devoted to the study of the asymptotic expansions of various quantum invariants related to the twist knots. In this paper, by using the saddle point method developed by Ohtsuki and Yokota, we obtain an asymptotic
Externí odkaz:
http://arxiv.org/abs/2410.14661
Direct proof of one-hook scaling property for Alexander polynomial from Reshetikhin-Turaev formalism
We prove that normalized colored Alexander polynomial (the $A \rightarrow 1$ limit of colored HOMFLY-PT polynomial) evaluated for one-hook (L-shape) representation R possesses scaling property: it is equal to the fundamental Alexander polynomial with
Externí odkaz:
http://arxiv.org/abs/2410.13676
We present a state sum construction that assigns a scalar to a skeleton in a closed oriented three-dimensional manifold. The input datum is the pivotal bicategory $\mathbf{Mod}^{\mathrm{sph}}(\mathcal{A})$ of spherical module categories over a spheri
Externí odkaz:
http://arxiv.org/abs/2407.10018
Autor:
Tarkaev, Vladimir
This paper concerns pseudo-classical knots in the non-orientable manifold $\hat{\Sigma} =\Sigma \times [0,1]$, where $\Sigma$ is a non-orientable surface and a knot $K \subset \hat{\Sigma}$ is called pseudo-classical if $K$ is orientation-preserving
Externí odkaz:
http://arxiv.org/abs/2407.20715
Autor:
Taniguchi, Toyo
The divergence map, an important ingredient in the algebraic description of the Turaev cobracket on a connected oriented compact surface with boundary, is reformulated in the context of non-commutative geometry using a flat connection on the space of
Externí odkaz:
http://arxiv.org/abs/2403.16566
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Korablev, Philipp
Publikováno v:
Siberian Electronic Mathematical Reports. 2022. Vol. 19, no. 2. PP. 698-707
A homologically trivial part of any Turaev-Viro invariant odd order $r$ is a Turaev-Viro type invariant order $\frac{r + 1}{2}$. In this paper we find an explicit formulas for this Turaev -- Viro type invariant, corresponding to the invariant order $
Externí odkaz:
http://arxiv.org/abs/2310.05802
In this paper, we study the kernels of the $\mathrm{SO}(3)$-Witten-Reshetikhin-Turaev quantum representations $\rho_p$ of mapping class groups of closed orientable surfaces $\Sigma_g$ of genus $g.$ We investigate the question whether the kernel of $\
Externí odkaz:
http://arxiv.org/abs/2309.11906
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lallouche, Mickael
A 3-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor from the category of 3-cobordisms to the category of vector spaces. Such TQFTs provide in particular numerical invariants of closed 3-manifolds such as the Reshet
Externí odkaz:
http://arxiv.org/abs/2308.03942