Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Tuomas Sahlsten"'
Publikováno v:
International Mathematics Research Notices.
We prove that there exists a constant $\epsilon> 0$ with the following property: if $K \subset {\mathbb {R}}^2$ is a compact set that contains no pair of the form $\{x, x + (z, z^{2})\}$ for $z \neq 0$, then $\dim _{\textrm {H}} K \leq 2 - \epsilon $
Autor:
Jialun Li, Tuomas Sahlsten
Publikováno v:
Sahlsten, T & Li, J 2021, ' Trigonometric series and self-similar sets ', Journal of the European Mathematical Society . < https://arxiv.org/abs/1902.00426 >
Let $F$ be a self-similar set on $\mathbb{R}$ associated to contractions $f_j(x) = r_j x + b_j$, $j \in \mathcal{A}$, for some finite $\mathcal{A}$, such that $F$ is not a singleton. We prove that if $\log r_i / \log r_j$ is irrational for some $i \n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ba177be37209334f5742855d3a4f8ec2
https://arxiv.org/abs/1902.00426
https://arxiv.org/abs/1902.00426
Let $M$ be a closed, oriented, and connected Riemannian $n$-manifold, for $n\ge 2$, which is not a rational homology sphere. We show that, for a non-constant and non-injective uniformly quasiregular self-map $f\colon M\to M$, the topological entropy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8976130ab6a9aa9dcdae0da8d7a92732
Autor:
Jialun Li, Tuomas Sahlsten
Publikováno v:
Li, J & Sahlsten, T 2020, ' Fourier transform of self-affine measures ', Advances in Mathematics, vol. 374, 107349 . https://doi.org/10.1016/j.aim.2020.107349
Suppose $F$ is a self-affine set on $\mathbb{R}^d$, $d\geq 2$, which is not a singleton, associated to affine contractions $f_j = A_j + b_j$, $A_j \in \mathrm{GL}(d,\mathbb{R})$, $b_j \in \mathbb{R}^d$, $j \in \mathcal{A}$, for some finite $\mathcal{
Publikováno v:
Jordan, T, Munday, S & Sahlsten, T 2018, ' Stability and perturbations of countable Markov maps ', Nonlinearity, vol. 31, no. 4, pp. 1351-1377 . https://doi.org/10.1088/1361-6544/aa9d5b
Let T and Tϵ, ϵ > 0, be countable Markov maps such that the branches of Tϵ converge pointwise to the branches of T, as ϵ → 0. We study the stability of various quantities measuring the singularity (dimension, Hölder exponent etc) of the topolo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d47298b9dfe640366422cc0749be2298
https://research-information.bris.ac.uk/ws/files/137369908/perturbationsMarkov.pdf
https://research-information.bris.ac.uk/ws/files/137369908/perturbationsMarkov.pdf
Autor:
Jonathan M. Fraser, Tuomas Sahlsten
Publikováno v:
Anal. PDE 11, no. 1 (2018), 115-132
Sahlsten, T & Fraser, J 2018, ' On the Fourier analytic structure of the Brownian graph ', Analysis & PDE, vol. 11, no. 1, pp. 115-132 . https://doi.org/10.2140/apde.2018.11.115
Sahlsten, T & Fraser, J 2018, ' On the Fourier analytic structure of the Brownian graph ', Analysis & PDE, vol. 11, no. 1, pp. 115-132 . https://doi.org/10.2140/apde.2018.11.115
In a previous article (\textit{Int. Math. Res. Not.} 2014, 2730--2745) T. Orponen and the authors proved that the Fourier dimension of the graph of any real-valued function on $\mathbb{R}$ is bounded above by $1$. This partially answered a question o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::87bf950093aeafea2e9afbfe67e939d3
https://projecteuclid.org/euclid.apde/1513774490
https://projecteuclid.org/euclid.apde/1513774490
Publikováno v:
Li, B, Sahlsten, T & Samuel, T 2016, ' Intermediate beta-shifts of finite type ', Discrete and Continuous Dynamical Systems, vol. 36, no. 1, pp. 323-344 . https://doi.org/10.3934/dcds.2016.36.323
An aim of this article is to highlight dynamical differences between the greedy, and hence the lazy, $\beta$-shift (transformation) and an intermediate $\beta$-shift (transformation), for a fixed $\beta \in (1, 2)$. Specifically, a classification in
Publikováno v:
Advances in Mathematics. 268:564-602
We study the scaling scenery and limit geometry of invariant measures for the non-conformal toral endomorphism ( x , y ) ↦ ( m x mod 1 , n y mod 1 ) that are Bernoulli measures for the natural Markov partition. We show that the statistics of the sc
Autor:
Tuomas Sahlsten, Etienne Le Masson
Publikováno v:
Duke Math. J. 166, no. 18 (2017), 3425-3460
Duke Mathematical Journal
Le Masson, E & Sahlsten, T 2017, ' Quantum ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces ', Duke Mathematical Journal, vol. 166, no. 18, pp. 3425-3460 . https://doi.org/10.1215/00127094-2017-0027
Sahlsten, T & Le Masson, E 2017, ' Quantum ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces ', Duke Mathematical Journal, vol. 166, no. 18, pp. 3425-3460 . https://doi.org/10.1215/00127094-2017-0027
Duke Mathematical Journal
Le Masson, E & Sahlsten, T 2017, ' Quantum ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces ', Duke Mathematical Journal, vol. 166, no. 18, pp. 3425-3460 . https://doi.org/10.1215/00127094-2017-0027
Sahlsten, T & Le Masson, E 2017, ' Quantum ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces ', Duke Mathematical Journal, vol. 166, no. 18, pp. 3425-3460 . https://doi.org/10.1215/00127094-2017-0027
We present a quantum ergodicity theorem for fixed spectral window and sequences of compact hyperbolic surfaces converging to the hyperbolic plane in the sense of Benjamini and Schramm. This addresses a question posed by Colin de Verdi\`{e}re. Our the
Publikováno v:
International Mathematics Research Notices. 2014:2730-2745
We study the Fourier dimensions of graphs of real-valued functions defined on the unit interval [0,1]. Our results imply that the graph of the fractional Brownian motion is almost surely not a Salem set, answering in part a question of Kahane from 19