Zobrazeno 1 - 10
of 115
pro vyhledávání: '"Tu Zhenhan"'
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 November 2024 539(2)
Autor:
Feng, Zhiming, Tu, Zhenhan
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 February 2024 530(2)
Publikováno v:
Demonstratio Mathematica, Vol 56, Iss 1, Pp 20220168-241 (2023)
Let Sγ,A,B∗(D){S}_{\gamma ,A,B}^{\ast }\left({\mathbb{D}}) be the usual class of gg-starlike functions of complex order γ\gamma in the unit disk D={ζ∈C:∣ζ∣
Externí odkaz:
https://doaj.org/article/a8f8bfb4b2ff4149a7877865a19b755b
Autor:
Tu, Zhenhan, Xiong, Liangpeng
Publikováno v:
Complex Analysis and Operator Theory 13(2019),2747-2769
Let $\widehat{\mathcal {S}}_g^{\alpha, \beta}(\mathbb{B}^n)$ be a subclass of normalized biholomorphic mappings defined on the unit ball in $\mathbb{C}^n,$ which is closely related to the starlike mappings. Firstly, we obtain the growth theorem for $
Externí odkaz:
http://arxiv.org/abs/1910.09150
The Fock-Bargmann-Hartogs domain $D_{n, m}(\mu)$ is defined by $$ D_{n, m}(\mu):=\{(z, w)\in\mathbb{C}^{n}\times\mathbb{C}^m:\Vert w \Vert^20.$ The Fock-Bargmann-Hartogs domain $D_{n, m}(\mu)$ is an unbounded
Externí odkaz:
http://arxiv.org/abs/1910.05892
Autor:
Tang, Yanyan, Tu, Zhenhan
We introduce a wider class of bounded Hartogs domains, which contains some generalizations of the classical Hartogs triangle. A sharp criteria for the $L^p-L^q$ boundedness of the Toeplitz operator with symbol $K^{-t}$ is obtained on these domains, w
Externí odkaz:
http://arxiv.org/abs/1908.02192
Autor:
Bi, Enchao, Tu, Zhenhan
Publikováno v:
Pacific J. Math. 297(2018), 277-297
A generalized Fock-Bargmann-Hartogs domain $D_n^{\mathbf{m},\mathbf{p}}$ is defined as a domain fibered over $\mathbb{C}^{n}$ with the fiber over $z\in \mathbb{C}^{n}$ being a generalized complex ellipsoid $\Sigma_z({\mathbf{m},\mathbf{p}})$. In gene
Externí odkaz:
http://arxiv.org/abs/1812.10600
The Fock-Bargmann-Hartogs domain $D_{n,m}$ in $\mathbb{C}^{n+m}$ is defined by the inequality $\|w\|^2
Externí odkaz:
http://arxiv.org/abs/1812.07338
Publikováno v:
Journal of Geometry and Physics Vol.135(2019), 187-203
The purpose of this paper is twofold. Firstly, we will compute the explicit expression of the Rawnsley's $\varepsilon$-function $\varepsilon_{(\alpha,g(\mu;\nu))}$ of $\big(\big(\prod_{j=1}^k\Omega_j\big)^{{\mathbb{B}}^{d_0}}(\mu),g(\mu;\nu)\big)$, w
Externí odkaz:
http://arxiv.org/abs/1811.04703
This paper proves the non-existence of common K\"ahler submanifolds of the complex Euclidean space and the symmetrized polydisc endowed with their canonical metrics.
Comment: To appear in Comptes Rendus Mathematique
Comment: To appear in Comptes Rendus Mathematique
Externí odkaz:
http://arxiv.org/abs/1803.06499