Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Tuğba Akyel"'
Autor:
Tuğba Akyel
Publikováno v:
Filomat. 35:3713-3720
The aim of this study is to solve the Fekete-Szeg? problem and to define upper bound for Hankel determinant H2(1) in a novel class K of analytical functions in the unit disc. Moreover, in a class of analytic functions on the unit disc, assuming the e
Autor:
Tuğba Akyel, Bülent Nafi Örnek
Publikováno v:
Boletim da Sociedade Paranaense de Matemática. 38:219-226
In this paper, a boundary version of the Schwarz lemma for the class $\mathcal{% N(\alpha )}$ is investigated. For the function $f(z)=\frac{1}{z}% +a_{0}+a_{1}z+a_{2}z^{2}+...$ defined in the punctured disc $E$ such that $% f(z)\in \mathcal{N(\alpha
Autor:
Tuğba Akyel, Bülent Nafi Örnek
Publikováno v:
Volume: 23, Issue: 3 446-452
Sakarya University Journal of Science
Sakarya University Journal of Science
We consider a boundary version of the Schwarz Lemma on a certain class which isdenoted by K(alfa) . For the function f(z)=z+c2z2+....... which is defined in the unit disc Esuch that the function f (z) belongs to the class K(alfa) , we estimate from b
Autor:
Tuğba Akyel, Bülent Nafi Örnek
Publikováno v:
FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020).
We present a different version of Schwarz Lemma and estimate the angular derivative of the function z f (z) f(z) from below for λ−spirallike function f(z) of complex order at the boundary of the unit disc D by taking into account of the zeros of t
Autor:
Bülent Nafi Örnek, Tuğba Akyel
Publikováno v:
Filomat. 31:4139-4151
Autor:
Tuğba Akyel, Bülent Nafi Örnek
Publikováno v:
Publications de l'Institut Math?matique (Belgrade). 101:191-196
Let f be a holomorphic function in the unit disc and |f(z)?1| < 1 for |z| < 1. We generalize the uniqueness portion of Schwarz?s lemma and provide sufficient conditions on the local behavior of f near a finite set of boundary points that needed for f
Autor:
Tuğba Akyel, Bülent Nafi Örnek
Publikováno v:
Filomat. 31:3643-3650
In this paper, a boundary version of the uniqueness (or, rigidity) part of the Schwarz lemma should be investigated. Also, new results related to inner functions, inner capacities, and bilogaritmic concave majorants are obtained.
Autor:
Tuğba Akyel, Bülent Nafi Örnek
Publikováno v:
Proceedings - Mathematical Sciences. 126:69-78
In this paper, a boundary version of the Schwarz inequality is investigated. We obtain more general results at the boundary. If we know the second coefficient in the expansion of the function f(z) = 1 + cpzp + cp + 1zp + 1…, then we obtain new ineq
Autor:
Bülent Nafi Örnek, Tuğba Akyel
Publikováno v:
THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019).
We consider the rigidity part of Schwarz Lemma. Let f be a holomorphic function in the unit disc D and |ℜf(z)
Autor:
Tuğba Akyel, Bülent Nafi Örnek
Publikováno v:
The Pure and Applied Mathematics. 22:263-273
In this paper, a boundary version of Schwarz lemma is investigated. For the function holomorphic f(z) = a + cpz p + cp+1z p+1 + ... defined in the unit disc satisfying |f(z)− 1| < 1, where 0 < a < 2, we estimate a module of angular derivative at th