Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Tu, Junwu"'
Autor:
Tu, Junwu
In this note we record a comparison theorem on the B-model variation of semi-infinite Hodge structures. This result is considered a folklore theorem by experts in the field. We only take this opportunity to write it down. Our motivation is to apply i
Externí odkaz:
http://arxiv.org/abs/2404.13805
Autor:
Caldararu, Andrei, Tu, Junwu
We introduce enumerative invariants $F_{g,n}$ $(g\geq0$, $n \geq 1)$ associated to a cyclic $A_\infty$ algebra and a splitting of its non-commutative Hodge filtration. These invariants are defined by explicitly computable Feynman sums, and encode the
Externí odkaz:
http://arxiv.org/abs/2404.01499
Autor:
NISHIMURA, Hirokazu
Publikováno v:
zbMATH Open.
Autor:
Amorim, Lino, Tu, Junwu
Categorical Enumerative Invariants (CEI) are invariants associated with unital cyclic $A_\infty$-categories that are smooth, proper and satisfy the Hodge-to-de-Rham degeneration property. In this paper, we formulate and prove their Morita invariance.
Externí odkaz:
http://arxiv.org/abs/2209.02744
Autor:
Tu, Junwu
For an $S^1$-framed modular operad $P$, we introduce its "Feynman compactification" denoted by $FP$ which is a modular operad. Let $\{\mathbb{M}^{\sf fr}(g,n)\}_{(g,n)}$ be the $S^1$-framed modular operad defined using moduli spaces of smooth curves
Externí odkaz:
http://arxiv.org/abs/2103.01383
We define combinatorial counterparts to the geometric string vertices of Sen-Zwiebach and Costello-Zwiebach, which are certain closed subsets of the moduli spaces of curves. Our combinatorial vertices contain the same information as the geometric one
Externí odkaz:
http://arxiv.org/abs/2009.06673
Autor:
Caldararu, Andrei, Tu, Junwu
To a pair $(A,s)$ consisting of a smooth, cyclic $A_\infty$-algebra $A$ and a splitting $s$ of the Hodge filtration on its Hochschild homology Costello (2005) associates an invariant which conjecturally generalizes the total descendant Gromov-Witten
Externí odkaz:
http://arxiv.org/abs/2009.06659
Autor:
Amorim, Lino, Tu, Junwu
In this paper we prove an inverse function theorem in derived differential geometry. More concretely, we show that a morphism of curved $L_\infty$ spaces which is a quasi-isomorphism at a point has a local homotopy inverse. This theorem simultaneousl
Externí odkaz:
http://arxiv.org/abs/2008.01747
Autor:
Tu, Junwu
Publikováno v:
Advances in Mathematics Volume 384, 25 June 2021, 107744
Let $W\in \mathbb{C}[x_1,\cdots,x_N]$ be an invertible polynomial with an isolated singularity at origin, and let $G\subset {{\sf SL}}_N\cap (\mathbb{C}^*)^N$ be a finite diagonal and special linear symmetry group of $W$. In this paper, we use the ca
Externí odkaz:
http://arxiv.org/abs/1910.00037
Autor:
Amorim, Lino, Tu, Junwu
Publikováno v:
Selecta Math. (N.S.) 28 (2022), no. 3, Paper No. 54, 44 pp
We study categorical primitive forms for Calabi--Yau $A_\infty$ categories with semi-simple Hochschild cohomology. We classify these primitive forms in terms of certain grading operators on the Hochschild homology. We use this result to prove that, i
Externí odkaz:
http://arxiv.org/abs/1909.05319