Zobrazeno 1 - 10
of 999
pro vyhledávání: '"Tsymbaliuk A"'
Autor:
Martin, Ian, Tsymbaliuk, Alexander
In this note, we construct dual PBW bases of the positive and negative subalgebras of the two-parameter quantum groups $U_{r,s}(\mathfrak{g})$ in classical types, as used in our earlier work arXiv:2407.01450. Following the ideas of Leclerc and Clark-
Externí odkaz:
http://arxiv.org/abs/2412.06670
Autor:
Hong, Kyungtak, Tsymbaliuk, Alexander
We present a formula for trigonometric orthosymplectic $R$-matrices associated with any parity sequence. We further apply the Yang-Baxterization technique of [M.Ge, Y.Wu, K.Xue, "Explicit trigonometric Yang-Baxterization", Internat. J. Modern Phys. A
Externí odkaz:
http://arxiv.org/abs/2408.16720
Autor:
Neguţ, Andrei, Tsymbaliuk, Alexander
Root vectors in quantum groups (of finite type) generalize to fused currents in quantum loop groups ([5]). In the present paper, we construct fused currents as duals to specialization maps of the corresponding shuffle algebras ([7,8,9]) in types ADE.
Externí odkaz:
http://arxiv.org/abs/2408.02411
We generalize the study of standard Lyndon loop words from [A.Negut, A.Tsymbaliuk, "Quantum loop groups and shuffle algebras via Lyndon words", Adv. Math. 439 (2024), Paper No. 109482] to a more general class of orders on the underlying alphabet, as
Externí odkaz:
http://arxiv.org/abs/2407.19939
Autor:
Martin, Ian, Tsymbaliuk, Alexander
We construct finite $R$-matrices for the first fundamental representation $V$ of two-parameter quantum groups $U_{r,s}(\mathfrak{g})$ for classical $\mathfrak{g}$, both through the decomposition of $V\otimes V$ into irreducibles $U_{r,s}(\mathfrak{g}
Externí odkaz:
http://arxiv.org/abs/2407.01450
Publikováno v:
Zdorovʹe Rebenka, Vol 19, Iss 6, Pp 368-374 (2024)
Background. The increasing number of orphan (rare) diseases, most of which have a prevalence of less than 1 : 1,000,000, poses a serious challenge for modern medicine. In most cases, diagnosis is delayed leading to irreversible changes in the body. T
Externí odkaz:
https://doaj.org/article/7aef693684f24da4bdc835582734d585
Autor:
Frassek, Rouven, Tsymbaliuk, Alexander
Publikováno v:
Letters in Mathematical Physics 114 (2024), Paper No. 49, 39pp
We construct Lax matrices of superoscillator type that are solutions of the RTT-relation for the rational orthosymplectic $R$-matrix, generalizing orthogonal and symplectic oscillator type Lax matrices previously constructed by the authors in arXiv:2
Externí odkaz:
http://arxiv.org/abs/2309.14199
Autor:
Avdieiev, Yehor, Tsymbaliuk, Alexander
Publikováno v:
International Mathematics Research Notices (2024), 37pp
We generalize an algorithm of Leclerc describing explicitly the bijection of Lalonde-Ram from finite to affine Lie algebras. In type $A_n^{(1)}$, we compute all affine standard Lyndon words for any order of the simple roots, and establish some proper
Externí odkaz:
http://arxiv.org/abs/2305.16299
Autor:
Hu, Yue, Tsymbaliuk, Alexander
Publikováno v:
International Mathematics Research Notices (2024), no. 7, 6259-6302
We construct a family of PBWD bases for the positive subalgebras of quantum loop algebras of type $B_n$ and $G_2$, as well as their Lusztig and RTT (for type $B_n$ only) integral forms, in the new Drinfeld realization. We also establish a shuffle alg
Externí odkaz:
http://arxiv.org/abs/2305.00810
Autor:
CUPID collaboration, Alfonso, K., Armatol, A., Augier, C., Avignone III, F. T., Azzolini, O., Balata, M., Barabash, A. S., Bari, G., Barresi, A., Baudin, D., Bellini, F., Benato, G., Berest, V., Beretta, M., Bettelli, M., Biassoni, M., Billard, J., Boldrini, V., Branca, A., Brofferio, C., Bucci, C., Camilleri, J., Campani, A., Capelli, C., Capelli, S., Cappelli, L., Cardani, L., Carniti, P., Casali, N., Celi, E., Chang, C., Chiesa, D., Clemenza, M., Colantoni, I., Copello, S., Craft, E., Cremonesi, O., Creswick, R. J., Cruciani, A., D'Addabbo, A., D'Imperio, G., Dabagov, S., Dafinei, I., Danevich, F. A., De Jesus, M., de Marcillac, P., Dell'Oro, S., Di Domizio, S., Di Lorenzo, S., Dixon, T., Dompé, V., Drobizhev, A., Dumoulin, L., Fantini, G., Faverzani, M., Ferri, E., Ferri, F., Ferroni, F., Figueroa-Feliciano, E., Foggetta, L., Formaggio, J., Franceschi, A., Fu, C., Fu, S., Fujikawa, B. K., Gallas, A., Gascon, J., Ghislandi, S., Giachero, A., Gianvecchio, A., Girola, M., Gironi, L., Giuliani, A., Gorla, P., Gotti, C., Grant, C., Gras, P., Guillaumon, P. V., Gutierrez, T. D., Han, K., Hansen, E. V., Heeger, K. M., Helis, D. L., Huang, H. Z., Imbert, L., Johnston, J., Juillard, A., Karapetrov, G., Keppel, G., Khalife, H., Kobychev, V. V., Kolomensky, Yu. G., Konovalov, S. I., Kowalski, R., Langford, T., Lefevre, M., Liu, R., Liu, Y., Loaiza, P., Ma, L., Madhukuttan, M., Mancarella, F., Marini, L., Marnieros, S., Martinez, M., Maruyama, R. H., Mas, Ph., Mayer, D., Mazzitelli, G., Mei, Y., Milana, S., Morganti, S., Napolitano, T., Nastasi, M., Nikkel, J., Nisi, S., Nones, C., Norman, E. B., Novosad, V., Nutini, I., O'Donnell, T., Olivieri, E., Olmi, M., Ouellet, J. L., Pagan, S., Pagliarone, C., Pagnanini, L., Pattavina, L., Pavan, M., Peng, H., Pessina, G., Pettinacci, V., Pira, C., Pirro, S., Poda, D. V., Polischuk, O. G., Ponce, I., Pozzi, S., Previtali, E., Puiu, A., Quitadamo, S., Ressa, A., Rizzoli, R., Rosenfeld, C., Rosier, P., Scarpaci, J. A., Schmidt, B., Sharma, V., Shlegel, V. N., Singh, V., Sisti, M., Slocum, P., Speller, D., Surukuchi, P. T., Taffarello, L., Tomei, C., Torres, J. A., Tretyak, V. I., Tsymbaliuk, A., Velazquez, M., Vetter, K. J., Wagaarachchi, S. L., Wang, G., Wang, L., Wang, R., Welliver, B., Wilson, J., Wilson, K., Winslow, L. A., Xue, M., Yan, L., Yang, J., Yefremenko, V., Umatov, V. I., Zarytskyy, M. M., Zhang, J., Zolotarova, A., Zucchelli, S.
CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ~250 kg of isotopic mass of $^{100}$Mo. It will operate at $\sim$10 mK in a cryostat currently hosting a similar-scale bolometric array for t
Externí odkaz:
http://arxiv.org/abs/2304.04674