Zobrazeno 1 - 10
of 417
pro vyhledávání: '"Tsujii J"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Dengel, A., Etzioni, O., DeCario, N., Hoos, H.H., Li, F.F., Tsujii, J., Traverso, P., Braunschweig, B., Ghallab, M.
Publikováno v:
Lecture Notes in Computer Science, 90-115. Cham: Springer
STARTPAGE=90;ENDPAGE=115;TITLE=Lecture Notes in Computer Science
Reflections on Artificial Intelligence for Humanity ISBN: 9783030691271
Reflections on Artificial Intelligence for Humanity
STARTPAGE=90;ENDPAGE=115;TITLE=Lecture Notes in Computer Science
Reflections on Artificial Intelligence for Humanity ISBN: 9783030691271
Reflections on Artificial Intelligence for Humanity
The field of AI is rich in scientific and technical challenges. Progress needs to be made in machine learning paradigms to make them more efficient and less data intensive. Bridges between data-based and model-based AI are needed in order to benefit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bcefcb7b4727da87b2397f1096e5f5e3
https://hdl.handle.net/1887/3277262
https://hdl.handle.net/1887/3277262
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing : EMNLP 2018: Brussels, Belgium, Oct. 31-Nov. 4
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing : EMNLP 2018
EMNLP
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing : EMNLP 2018
EMNLP
Recent work has shown that recurrent neural networks (RNNs) can implicitly capture and exploit hierarchical information when trained to solve common natural language processing tasks such as language modeling (Linzen et al., 2016) and neural machine
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c89018babd3caa9bd8bdbb7e385d8f6c
https://doi.org/10.18653/v1/D18-1503
https://doi.org/10.18653/v1/D18-1503
Publikováno v:
EMNLP
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing : EMNLP 2018: Brussels, Belgium, Oct. 31-Nov. 4, 436-446
STARTPAGE=436;ENDPAGE=446;TITLE=Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing : EMNLP 2018
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing : EMNLP 2018: Brussels, Belgium, Oct. 31-Nov. 4, 436-446
STARTPAGE=436;ENDPAGE=446;TITLE=Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing : EMNLP 2018
Neural Machine Translation has achieved state-of-the-art performance for several language pairs using a combination of parallel and synthetic data. Synthetic data is often generated by back-translating sentences randomly sampled from monolingual data
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ecffc22d4ff16f57157681a870c022b2
Autor:
Dong, Y., Shen, Y., Crawford, E., van Hoof, H., Cheung, J.C.K., Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J.
Publikováno v:
EMNLP
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing : EMNLP 2018: Brussels, Belgium, Oct. 31-Nov. 4, 3739-3748
STARTPAGE=3739;ENDPAGE=3748;TITLE=Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing : EMNLP 2018
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing : EMNLP 2018: Brussels, Belgium, Oct. 31-Nov. 4, 3739-3748
STARTPAGE=3739;ENDPAGE=3748;TITLE=Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing : EMNLP 2018
In this work, we propose a novel method for training neural networks to perform single-document extractive summarization without heuristically-generated extractive labels. We call our approach BanditSum as it treats extractive summarization as a cont
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e2f5809ad603014a2715bea2a6939fea
https://hdl.handle.net/11245.1/a11de747-8c4c-442d-a268-d2d1dd43b396
https://hdl.handle.net/11245.1/a11de747-8c4c-442d-a268-d2d1dd43b396
Publikováno v:
COLING 2014: the 25th International Conference on Computational Linguistics: proceedings of COLING 2014 : technical papers: August 23-29, 2014, Dublin, Ireland, 1533-1542
STARTPAGE=1533;ENDPAGE=1542;TITLE=COLING 2014: the 25th International Conference on Computational Linguistics
STARTPAGE=1533;ENDPAGE=1542;TITLE=COLING 2014: the 25th International Conference on Computational Linguistics
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::efc79af9557256a9399c4b8fe68662cf
https://dare.uva.nl/personal/pure/en/publications/empirical-analysis-of-aggregation-methods-for-collective-annotation(b536ac14-1479-4c4c-95fb-de45680c82df).html
https://dare.uva.nl/personal/pure/en/publications/empirical-analysis-of-aggregation-methods-for-collective-annotation(b536ac14-1479-4c4c-95fb-de45680c82df).html
Publikováno v:
COLING 2014: the 25th International Conference on Computational Linguistics: proceedings of COLING 2014 : technical papers: August 23-29, 2014, Dublin, Ireland, 1918-1927
STARTPAGE=1918;ENDPAGE=1927;TITLE=COLING 2014: the 25th International Conference on Computational Linguistics
STARTPAGE=1918;ENDPAGE=1927;TITLE=COLING 2014: the 25th International Conference on Computational Linguistics
Class-based language modeling (LM) is a long-studied and effective approach to overcome data sparsity in the context of n-gram model training. In statistical machine translation (SMT), differ- ent forms of class-based LMs have been shown to improve b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::24d8ff829ba1cd71e610db85eb6900ff
https://dare.uva.nl/personal/pure/en/publications/classbased-language-modeling-for-translating-into-morphologically-rich-languages(77089f79-07ee-4c1e-a7c4-97b37d03a56b).html
https://dare.uva.nl/personal/pure/en/publications/classbased-language-modeling-for-translating-into-morphologically-rich-languages(77089f79-07ee-4c1e-a7c4-97b37d03a56b).html
Publikováno v:
COLING 2014: the 25th International Conference on Computational Linguistics: proceedings of COLING 2014 : technical papers: August 23-29, 2014, Dublin, Ireland, 1928-1939
STARTPAGE=1928;ENDPAGE=1939;TITLE=COLING 2014: the 25th International Conference on Computational Linguistics
STARTPAGE=1928;ENDPAGE=1939;TITLE=COLING 2014: the 25th International Conference on Computational Linguistics
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::5d9e7dd21e8d9b8e2c5a8180d1849a17
https://dare.uva.nl/personal/pure/en/publications/latent-domain-translation-models-in-mixofdomains-haystack(986ef1c4-d27e-40ef-9061-0134b93d9909).html
https://dare.uva.nl/personal/pure/en/publications/latent-domain-translation-models-in-mixofdomains-haystack(986ef1c4-d27e-40ef-9061-0134b93d9909).html
Publikováno v:
COLING 2014: the 25th International Conference on Computational Linguistics: proceedings of COLING 2014 : technical papers: August 23-29, 2014, Dublin, Ireland, 1974-1984
STARTPAGE=1974;ENDPAGE=1984;TITLE=COLING 2014: the 25th International Conference on Computational Linguistics
STARTPAGE=1974;ENDPAGE=1984;TITLE=COLING 2014: the 25th International Conference on Computational Linguistics
In this work, we discuss the benefits of using automatically parsed corpora to study language variation. The study of language variation is an area of linguistics in which quantitative methods have been particularly successful. We argue that the larg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::1f286d4f2c386a95b45225219e7adc11
https://dare.uva.nl/personal/pure/en/publications/applying-automatically-parsed-corpora-to-the-study-of-language-variation(731e3bcb-f098-4305-b500-3513372eefd6).html
https://dare.uva.nl/personal/pure/en/publications/applying-automatically-parsed-corpora-to-the-study-of-language-variation(731e3bcb-f098-4305-b500-3513372eefd6).html