Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Tsuchimi, Satoshi"'
Autor:
Tsuchimi, Satoshi
We present a solution of the $(A_2+A_1)^{(1)}$ $q$-Painlev\'{e} equation in terms of the $\mu$-function. The $\mu$-function introduced by Zwegers is the most fundamental object in the study of mock theta functions. The results of this paper give us a
Externí odkaz:
http://arxiv.org/abs/2405.02902
Autor:
Tsuchimi, Satoshi
In this paper, we give fundamental solutions of some $q$-difference equations satisfied by the universal mock theta functions and the higher level Appell functions. As an application, we provide an alternative proof of the representation formulas of
Externí odkaz:
http://arxiv.org/abs/2305.12754
Autor:
Shibukawa, Genki, Tsuchimi, Satoshi
By applying Slater's transformation formulas for the bilateral basic hypergeometric series ${}_2\psi_{2}$, we derive three type translation formulas for the generalized Zwegers' $\mu$-function (``continuous $q$-Hermite function'') which was introduce
Externí odkaz:
http://arxiv.org/abs/2305.08101
Autor:
Shibukawa, Genki, Tsuchimi, Satoshi
Publikováno v:
SIGMA 19 (2023), 014, 23 pages
We introduce a one parameter deformation of the Zwegers' $\mu$-function as the image of $q$-Borel and $q$-Laplace transformations of a fundamental solution for the $q$-Hermite-Weber equation. We further give some formulas for our generalized $\mu$-fu
Externí odkaz:
http://arxiv.org/abs/2206.15137
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.